LibScan: Towards More Precise Third-Party Library Identification for Android Applications

Yafei Wu, Cong Sun, Dongrui Zeng, Gang Tan, Siqi Ma, Peicheng Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Android apps pervasively use third-party libraries (TPL) to reuse functionalities and improve development efficiency. The insufficient knowledge of the TPL internal exposes the developers and users to severe threats of security vulnerabilities. To mitigate such threats, people have proposed diversified approaches to identifying vulnerable or even malicious TPLs. However, the rich features of different modern obfuscators, including advanced repackaging, dead code removal, and control-flow randomization, have significantly impeded the precise detection of the TPLs. In this work, we propose a general-purpose TPL detection approach, LibScan. We first fingerprint code features to build the potential class correspondence relations between the app and TPL classes. Then, we use the method-opcode similarity and call-chain-opcode similarity to improve the accuracy of detected class correspondences. Moreover, we design early-stop criteria and reuse intermediate results to improve the efficiency of LibScan. In experiments, the evaluation with ground truths demonstrated the effectiveness of LibScan and its detection steps. We also applied LibScan to detect vulnerable TPLs in the top Google Play apps and large-scale wild apps, which shows the efficiency and scalability of our approach, as well as the potential of our approach as an auxiliary tool that helps malware detection.

Original languageEnglish (US)
Title of host publication32nd USENIX Security Symposium, USENIX Security 2023
PublisherUSENIX Association
Pages3385-3402
Number of pages18
ISBN (Electronic)9781713879497
StatePublished - 2023
Event32nd USENIX Security Symposium, USENIX Security 2023 - Anaheim, United States
Duration: Aug 9 2023Aug 11 2023

Publication series

Name32nd USENIX Security Symposium, USENIX Security 2023
Volume5

Conference

Conference32nd USENIX Security Symposium, USENIX Security 2023
Country/TerritoryUnited States
CityAnaheim
Period8/9/238/11/23

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'LibScan: Towards More Precise Third-Party Library Identification for Android Applications'. Together they form a unique fingerprint.

Cite this