TY - GEN
T1 - Lifelong Neural Predictive Coding
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
AU - Ororbia, Alexander G.
AU - Giles, C. Lee
AU - Mali, Ankur
AU - Kifer, Daniel
N1 - Funding Information:
We would like to thank Alexander Ororbia (Sr.) for useful discussions related to cognitive types, a concept that served as key motivation for the task contexts that drove lateral inhibition in this work.
Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - In lifelong learning systems based on artificial neural networks, one of the biggest obstacles is the inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this paper, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the popular back-propagation of errors. Grounded in the neurocognitive theory of predictive coding, our model adapts its synapses in a biologically-plausible fashion while another neural system learns to direct and control this cortex-like structure, mimicking some of the task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting compared to standard neural models, outperforming a swath of previously proposed methods, including rehearsal/data buffer-based methods, on both standard (SplitMNIST, Split Fashion MNIST, etc.) and custom benchmarks even though it is trained in a stream-like fashion. Our work offers evidence that emulating mechanisms in real neuronal systems, e.g., local learning, lateral competition, can yield new directions and possibilities for tackling the grand challenge of lifelong machine learning.
AB - In lifelong learning systems based on artificial neural networks, one of the biggest obstacles is the inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this paper, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the popular back-propagation of errors. Grounded in the neurocognitive theory of predictive coding, our model adapts its synapses in a biologically-plausible fashion while another neural system learns to direct and control this cortex-like structure, mimicking some of the task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting compared to standard neural models, outperforming a swath of previously proposed methods, including rehearsal/data buffer-based methods, on both standard (SplitMNIST, Split Fashion MNIST, etc.) and custom benchmarks even though it is trained in a stream-like fashion. Our work offers evidence that emulating mechanisms in real neuronal systems, e.g., local learning, lateral competition, can yield new directions and possibilities for tackling the grand challenge of lifelong machine learning.
UR - http://www.scopus.com/inward/record.url?scp=85163170686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85163170686&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85163170686
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
Y2 - 28 November 2022 through 9 December 2022
ER -