Abstract
Chlorophyll f (Chl f) permits some cyanobacteria to expand the spectral range for photosynthesis by absorbing far-red light.We used reverse genetics and heterologous expression to identify the enzyme for Chl f synthesis. Null mutants of "super-rogue" psbA4 genes, divergent paralogs of psbA genes encoding the D1 core subunit of photosystem II, abolished Chl f synthesis in two cyanobacteria that grow in far-red light. Heterologous expression of the psbA4 gene, which we rename chlF, enables Chl f biosynthesis in Synechococcus sp. PCC 7002. Because the reaction requires light, Chl f synthase is probably a photo-oxidoreductase that employs catalytically useful Chl a molecules, tyrosine YZ, and plastoquinone (as does photosystem II) but lacks a Mn4Ca1O5 cluster. Introduction of Chl f biosynthesis into crop plants could expand their ability to use solar energy.
Original language | English (US) |
---|---|
Article number | aaf9178 |
Journal | Science |
Volume | 353 |
Issue number | 6302 |
DOIs | |
State | Published - Aug 26 2016 |
All Science Journal Classification (ASJC) codes
- General