Light-Driven Permanent Charge Separation across a Hybrid Zero-Dimensional/Two-Dimensional Interface

Ilka Kriegel, Michele Ghini, Sebastiano Bellani, Kehao Zhang, Adam W. Jansons, Brandon M. Crockett, Kristopher M. Koskela, Edward S. Barnard, Erika Penzo, James E. Hutchison, Joshua A. Robinson, Liberato Manna, Nicholas J. Borys, P. James Schuck

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


We report the first demonstration of light-driven permanent charge separation across an ultrathin solid-state zero-dimensional (0D)/2D hybrid interface by coupling photoactive Sn-doped In2O3 nanocrystals with monolayer MoS2, the latter serving as a hole collector. We demonstrate that the nanocrystals in this device-ready architecture act as local light-controlled charge sources by quasi-permanently donating ∼5 holes per nanocrystal to the monolayer MoS2. The amount of photoinduced contactless charge transfer to the monolayer MoS2 competes with what is reached in electrostatically gated devices. Thus, we have constructed a hybrid bilayer structure in which the electrons and holes are separated into two different solid-state materials. The temporal evolution of the local doping levels of the monolayer MoS2 follows a capacitive charging model with effective total capacitances in the femtofarad regime and areal capacitances in the μF cm-2 range. This analysis indicates that the 0D/2D hybrid system may be able to store light energy at densities of at least μJ cm-2, presenting new potential foundational building blocks for next-generation nanodevices that can remotely control local charge density, power miniaturized circuitry, and harvest and store optical energy.

Original languageEnglish (US)
Pages (from-to)8000-8007
Number of pages8
JournalJournal of Physical Chemistry C
Issue number14
StatePublished - Apr 9 2020

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films


Dive into the research topics of 'Light-Driven Permanent Charge Separation across a Hybrid Zero-Dimensional/Two-Dimensional Interface'. Together they form a unique fingerprint.

Cite this