TY - GEN
T1 - LIMIT CYCLES IN BALLOONING STRINGS
AU - Zhu, Fang
AU - Rahn, Christopher D.
N1 - Publisher Copyright:
© 1998 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 1998
Y1 - 1998
N2 - This paper uses the Hopf bifurcation theorem to predict the limit cycles of ballooning strings observed in many textile manufacturing processes. The steady state and linearized solutions of the nonlinear governing equations are reviewed. The nonlinear dynamic equations are discretized and projected to a finite dimensional linear normal mode space, resulting in a set of nonlinearly coupled but linearly uncoupled ordinary differential equations. The first two equations, corresponding to the lowest normal mode, are analyzed using the Hopf bifurcation theorem. The first Lyapunov coefficient is calculated to prove the existence of stable limit cycles for double loop balloons with small string length. The bifurcation theorem, however, fails to apply to the large string length Hopf bifurcation point because the first Lyapunov coefficient is indeterminable. Numerical simulation of the nonlinear two-dimensional equations agrees with experimental results quantitatively for small string length and qualitatively for large string length.
AB - This paper uses the Hopf bifurcation theorem to predict the limit cycles of ballooning strings observed in many textile manufacturing processes. The steady state and linearized solutions of the nonlinear governing equations are reviewed. The nonlinear dynamic equations are discretized and projected to a finite dimensional linear normal mode space, resulting in a set of nonlinearly coupled but linearly uncoupled ordinary differential equations. The first two equations, corresponding to the lowest normal mode, are analyzed using the Hopf bifurcation theorem. The first Lyapunov coefficient is calculated to prove the existence of stable limit cycles for double loop balloons with small string length. The bifurcation theorem, however, fails to apply to the large string length Hopf bifurcation point because the first Lyapunov coefficient is indeterminable. Numerical simulation of the nonlinear two-dimensional equations agrees with experimental results quantitatively for small string length and qualitatively for large string length.
UR - http://www.scopus.com/inward/record.url?scp=85124345983&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85124345983&partnerID=8YFLogxK
U2 - 10.1115/IMECE1998-0565
DO - 10.1115/IMECE1998-0565
M3 - Conference contribution
AN - SCOPUS:85124345983
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 181
EP - 188
BT - Dynamics, Acoustics and Simulations
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 1998 International Mechanical Engineering Congress and Exposition, IMECE 1998
Y2 - 15 November 1998 through 20 November 1998
ER -