TY - GEN
T1 - Linear and nonlinear smooth orthogonal decomposition to reconstruct local fatigue dynamics
T2 - ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
AU - Segala, David B.
AU - Chelidze, David
AU - Gates, Deanna
AU - Dingwell, Jonathan
PY - 2010
Y1 - 2010
N2 - Identifying physiological fatigue is important for the development of more robust training protocols, better energy supplements, and/or reduction of muscle injuries. Current fatigue measurement technologies are usually invasive and/or impractical, and may not be realizable in out of laboratory settings. A fatigue identification methodology that only uses motion kinematics measurements has a great potential for field applications. Phase space warping (PSW) features of motion kinematic time series analyzed through smooth orthogonal decomposition (SOD) have tracked individual muscle fatigue. In this paper, the performance of a standard SOD analysis is compared to its nonlinear extension using a new experimental data set. Ten healthy right-handed subjects (27±2:8 years; 1:71±0:10 m height; and 69:91 ± 18:26 kg body mass) perform a sawing motion by pushing a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles are measured from the elbow, wrist and shoulder as well as surface Electromyography (EMG) from ten different muscle groups. A vector-valued feature time series is generated using PSW metrics estimated from movement kinematics. Dominant SOD coordinates of these features are extracted to track the individual muscle fatigue trends as indicated by mean and median frequencies of the corresponding EMG power spectra. Cross subject variability shows that considerably fewer nonlinear SOD coordinates are needed to track EMG- based fatigue markers, and that nonlinear SOD methodology captures fatigue dynamics in a lower-dimensional subspace than its linear counterpart.
AB - Identifying physiological fatigue is important for the development of more robust training protocols, better energy supplements, and/or reduction of muscle injuries. Current fatigue measurement technologies are usually invasive and/or impractical, and may not be realizable in out of laboratory settings. A fatigue identification methodology that only uses motion kinematics measurements has a great potential for field applications. Phase space warping (PSW) features of motion kinematic time series analyzed through smooth orthogonal decomposition (SOD) have tracked individual muscle fatigue. In this paper, the performance of a standard SOD analysis is compared to its nonlinear extension using a new experimental data set. Ten healthy right-handed subjects (27±2:8 years; 1:71±0:10 m height; and 69:91 ± 18:26 kg body mass) perform a sawing motion by pushing a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles are measured from the elbow, wrist and shoulder as well as surface Electromyography (EMG) from ten different muscle groups. A vector-valued feature time series is generated using PSW metrics estimated from movement kinematics. Dominant SOD coordinates of these features are extracted to track the individual muscle fatigue trends as indicated by mean and median frequencies of the corresponding EMG power spectra. Cross subject variability shows that considerably fewer nonlinear SOD coordinates are needed to track EMG- based fatigue markers, and that nonlinear SOD methodology captures fatigue dynamics in a lower-dimensional subspace than its linear counterpart.
UR - http://www.scopus.com/inward/record.url?scp=80054976292&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054976292&partnerID=8YFLogxK
U2 - 10.1115/DETC2010-28852
DO - 10.1115/DETC2010-28852
M3 - Conference contribution
AN - SCOPUS:80054976292
SN - 9780791844137
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 763
EP - 770
BT - ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Y2 - 15 August 2010 through 18 August 2010
ER -