Linear and nonlinear smooth orthogonal decomposition to reconstruct local fatigue dynamics: A comparison

David B. Segala, David Chelidze, Deanna Gates, Jonathan Dingwell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Identifying physiological fatigue is important for the development of more robust training protocols, better energy supplements, and/or reduction of muscle injuries. Current fatigue measurement technologies are usually invasive and/or impractical, and may not be realizable in out of laboratory settings. A fatigue identification methodology that only uses motion kinematics measurements has a great potential for field applications. Phase space warping (PSW) features of motion kinematic time series analyzed through smooth orthogonal decomposition (SOD) have tracked individual muscle fatigue. In this paper, the performance of a standard SOD analysis is compared to its nonlinear extension using a new experimental data set. Ten healthy right-handed subjects (27±2:8 years; 1:71±0:10 m height; and 69:91 ± 18:26 kg body mass) perform a sawing motion by pushing a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles are measured from the elbow, wrist and shoulder as well as surface Electromyography (EMG) from ten different muscle groups. A vector-valued feature time series is generated using PSW metrics estimated from movement kinematics. Dominant SOD coordinates of these features are extracted to track the individual muscle fatigue trends as indicated by mean and median frequencies of the corresponding EMG power spectra. Cross subject variability shows that considerably fewer nonlinear SOD coordinates are needed to track EMG- based fatigue markers, and that nonlinear SOD methodology captures fatigue dynamics in a lower-dimensional subspace than its linear counterpart.

Original languageEnglish (US)
Title of host publicationASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Pages763-770
Number of pages8
DOIs
StatePublished - 2010
EventASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010 - Montreal, QC, Canada
Duration: Aug 15 2010Aug 18 2010

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume5

Other

OtherASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Country/TerritoryCanada
CityMontreal, QC
Period8/15/108/18/10

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Linear and nonlinear smooth orthogonal decomposition to reconstruct local fatigue dynamics: A comparison'. Together they form a unique fingerprint.

Cite this