Abstract
We study stability of solutions of the Cauchy problem for the Hunter-Saxton equation ut+uux=14(∫-∞xux2dx-∫x∞ux2dx) with initial data u0. In particular, we derive a new Lipschitz metric dD with the property that for two solutions u and v of the equation we have dD(u(t),v(t))≥eCtdD(u0,v0).
Original language | English (US) |
---|---|
Pages (from-to) | 68-92 |
Number of pages | 25 |
Journal | Journal des Mathematiques Pures et Appliquees |
Volume | 94 |
Issue number | 1 |
DOIs | |
State | Published - Jul 2010 |
All Science Journal Classification (ASJC) codes
- General Mathematics
- Applied Mathematics