Abstract
The slow solid diffusion dynamics of sodium ions and the side-reaction of sodium metal plating at low potential in the hard carbon anode of sodium ion batteries (SIBs) pose significant challenges to the safety manipulation of high-rate batteries. Herein, a simple yet powerful fabricating method is reported on for “egg puff”-like hard carbon with few N doping using rosin as a precursor via liquid salt template-assisted and potassium hydroxide dual activation. The as-synthesized hard carbon delivers promising electrochemical properties in the ether-based electrolyte especially at high rates, based on the absorption mechanism of fast charge transfer. The optimized hard carbon exhibits a high specific capacity of 367 mAh g−1 at 0.05 A g−1 and 92.9% initial coulombic efficiency (ICE), 183 mAh g−1 at 10 A g−1, and ultra-long cycle stability of reversible discharge capacity of 151 mAh g−1 after 12,000 cycles at 5 A g−1 with the average coulombic efficiency of ≈99% and the decay of 0.0026% per cycle. These studies will undoubtedly provide an effective and practical strategy for advanced hard carbon anode of SIBs based on adsorption mechanism.
Original language | English (US) |
---|---|
Article number | 2302583 |
Journal | Small |
Volume | 19 |
Issue number | 39 |
DOIs | |
State | Published - Sep 27 2023 |
All Science Journal Classification (ASJC) codes
- Biotechnology
- General Chemistry
- Biomaterials
- General Materials Science
- Engineering (miscellaneous)