TY - JOUR
T1 - Liquid velocity in upward and downward air-water flows
AU - Sun, Xiaodong
AU - Paranjape, Sidharth
AU - Kim, Seungjin
AU - Ozar, Basar
AU - Ishii, Mamoru
PY - 2004/3
Y1 - 2004/3
N2 - Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions.
AB - Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions.
UR - http://www.scopus.com/inward/record.url?scp=0242657738&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242657738&partnerID=8YFLogxK
U2 - 10.1016/j.anucene.2003.08.002
DO - 10.1016/j.anucene.2003.08.002
M3 - Article
AN - SCOPUS:0242657738
SN - 0306-4549
VL - 31
SP - 357
EP - 373
JO - Annals of Nuclear Energy
JF - Annals of Nuclear Energy
IS - 4
ER -