Local electronic descriptors for solute-defect interactions in bcc refractory metals

Yong Jie Hu, Ge Zhao, Baiyu Zhang, Chaoming Yang, Mingfei Zhang, Zi Kui Liu, Xiaofeng Qian, Liang Qi

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


The interactions between solute atoms and crystalline defects such as vacancies, dislocations, and grain boundaries are essential in determining alloy properties. Here we present a general linear correlation between two descriptors of local electronic structures and the solute-defect interaction energies in binary alloys of body-centered-cubic (bcc) refractory metals (such as W and Ta) with transition-metal substitutional solutes. One electronic descriptor is the bimodality of the d-orbital local density of states for a matrix atom at the substitutional site, and the other is related to the hybridization strength between the valance sp- and d-bands for the same matrix atom. For a particular pair of solute-matrix elements, this linear correlation is valid independent of types of defects and the locations of substitutional sites. These results provide the possibility to apply local electronic descriptors for quantitative and efficient predictions on the solute-defect interactions and defect properties in alloys.

Original languageEnglish (US)
Article number4484
JournalNature communications
Issue number1
StatePublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Local electronic descriptors for solute-defect interactions in bcc refractory metals'. Together they form a unique fingerprint.

Cite this