TY - GEN
T1 - Local interfacial structures in horizontal bubbly flow with 90-degree bend
AU - Kim, Seungjin
AU - Park, Jung Han
AU - Kojasoy, Gunol
AU - Kelly, Joseph M.
PY - 2006
Y1 - 2006
N2 - Present study investigates the geometric effects of flow obstruction on the distribution of local two-phase flow parameters and their transport characteristics in horizontal two-phase flow. The round glass tubes of 50.3mm in inner diameter are employed as test sections, along which a 90-degee elbow is located at L/D=206.6 from the two-phase mixture inlet. In total, 15 different flow conditions are examined within the air-water bubbly flow regime. The detailed local two-phase flow parameters are acquired by the double-sensor conductivity probe at four different axial locations. The effect of elbow is found to be evident in both the distribution of local parameters and their development. The elbow clearly promotes bubble interactions resulting in significant changes in interfacial area concentration. It is also found that the elbow-effect propagates to be more significant further downstream (L/D=250) than immediate downstream (L/D=225) of the elbow. Furthermore, it is shown that the elbow induces significant oscillations in the flow in both vertical and horizontal directions of the tube cross-section. Characteristic geometric effects due to the existence of elbow are also shown clearly on the axial development of one-dimensional interfacial area concentration and void fraction.
AB - Present study investigates the geometric effects of flow obstruction on the distribution of local two-phase flow parameters and their transport characteristics in horizontal two-phase flow. The round glass tubes of 50.3mm in inner diameter are employed as test sections, along which a 90-degee elbow is located at L/D=206.6 from the two-phase mixture inlet. In total, 15 different flow conditions are examined within the air-water bubbly flow regime. The detailed local two-phase flow parameters are acquired by the double-sensor conductivity probe at four different axial locations. The effect of elbow is found to be evident in both the distribution of local parameters and their development. The elbow clearly promotes bubble interactions resulting in significant changes in interfacial area concentration. It is also found that the elbow-effect propagates to be more significant further downstream (L/D=250) than immediate downstream (L/D=225) of the elbow. Furthermore, it is shown that the elbow induces significant oscillations in the flow in both vertical and horizontal directions of the tube cross-section. Characteristic geometric effects due to the existence of elbow are also shown clearly on the axial development of one-dimensional interfacial area concentration and void fraction.
UR - http://www.scopus.com/inward/record.url?scp=33845794355&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845794355&partnerID=8YFLogxK
U2 - 10.1115/ICONE14-89221
DO - 10.1115/ICONE14-89221
M3 - Conference contribution
AN - SCOPUS:33845794355
SN - 0791837831
SN - 9780791837832
T3 - International Conference on Nuclear Engineering, Proceedings, ICONE
BT - Fourteenth International Conference on Nuclear Engineering 2006, ICONE 14
T2 - Fourteenth International Conference on Nuclear Engineering 2006, ICONE 14
Y2 - 17 July 2006 through 20 July 2006
ER -