TY - GEN
T1 - Local redesign for additive manufacturability of compliant mechanisms using topology optimization
AU - Koppen, Stijn
AU - Hoes, Emma
AU - Langelaar, Matthijs
AU - Frecker, Mary I.
N1 - Publisher Copyright:
© 2021 by ASME
PY - 2021
Y1 - 2021
N2 - Compliant mechanisms are crucial components in current and future high-precision applications. Topology optimization and additive manufacturing offer freedom to design complex compliant mechanisms that were impossible to realize using conventional manufacturing. Design for additive manufacturing constraints, such as the maximum overhang angle and minimum feature size, tend to drastically decrease the performance of topology optimized compliant mechanisms. It is observed that, among others, design for additive manufacturing constraints are only dominant in the flexure regions. Flexures are most sensitive to manufacturing errors, experience the highest stress levels and removal of support material carries the highest risk of failure. It is crucial to impose these constraints on the flexure regions, while in others part of the compliant mechanism design, these constraints can be relaxed. We propose to first design the global compliant mechanism layout in the full domain without imposing any design for additive manufacturing constraints. Subsequently we redesign selected refined local redesign domains with design for additive manufacturing constraints, whilst simultaneously considering the mechanism performance. The method is applied to a single-input-multi-output compliant mechanism case study, limiting the maximum overhang angle, introducing manufacturing robustness and limiting the maximum stress levels of a selected refined redesign domain. The high resolution local redesigns are detailed and accurate, without a large additional computational effort or decrease in mechanism performance. Thereto, the method proves widely applicable, computationally efficient and effective in its purpose.
AB - Compliant mechanisms are crucial components in current and future high-precision applications. Topology optimization and additive manufacturing offer freedom to design complex compliant mechanisms that were impossible to realize using conventional manufacturing. Design for additive manufacturing constraints, such as the maximum overhang angle and minimum feature size, tend to drastically decrease the performance of topology optimized compliant mechanisms. It is observed that, among others, design for additive manufacturing constraints are only dominant in the flexure regions. Flexures are most sensitive to manufacturing errors, experience the highest stress levels and removal of support material carries the highest risk of failure. It is crucial to impose these constraints on the flexure regions, while in others part of the compliant mechanism design, these constraints can be relaxed. We propose to first design the global compliant mechanism layout in the full domain without imposing any design for additive manufacturing constraints. Subsequently we redesign selected refined local redesign domains with design for additive manufacturing constraints, whilst simultaneously considering the mechanism performance. The method is applied to a single-input-multi-output compliant mechanism case study, limiting the maximum overhang angle, introducing manufacturing robustness and limiting the maximum stress levels of a selected refined redesign domain. The high resolution local redesigns are detailed and accurate, without a large additional computational effort or decrease in mechanism performance. Thereto, the method proves widely applicable, computationally efficient and effective in its purpose.
UR - http://www.scopus.com/inward/record.url?scp=85119965708&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119965708&partnerID=8YFLogxK
U2 - 10.1115/DETC2021-67642
DO - 10.1115/DETC2021-67642
M3 - Conference contribution
AN - SCOPUS:85119965708
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 45th Mechanisms and Robotics Conference (MR)
PB - American Society of Mechanical Engineers (ASME)
T2 - 45th Mechanisms and Robotics Conference, MR 2021, Held as Part of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2021
Y2 - 17 August 2021 through 19 August 2021
ER -