Local structure maturation in high entropy oxide (Mg,Co,Ni,Cu,Zn)1-x(Cr,Mn)xO thin films

Gabriela E. Niculescu, Gerald R. Bejger, John P. Barber, Joshua T. Wright, Saeed S.I. Almishal, Matthew Webb, Sai Venkata Gayathri Ayyagari, Jon Paul Maria, Nasim Alem, John T. Heron, Christina M. Rost

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

High entropy oxides (HEOs) have garnered much interest due to their available high degree of tunability. Here, we study the local structure of (MgNiCuCoZn)0.167(MnCr)0.083O, a composition based on the parent HEO (MgNiCuCoZn)0.2O. We synthesized a series of thin films via pulsed laser deposition at incremental oxygen partial pressures. X-ray diffraction shows lattice parameters to decrease with increased pO2 pressures until the onset of phase separation. X-ray absorption fine structure shows that specific atomic species in the composition dictate the global structure of the material as Cr, Co, and Mn shift to energetically favorable coordination with increasing pressure. Transmission electron microscopy analysis on a lower-pressure sample exhibits a rock salt structure, but the higher-pressure sample reveals reflections reminiscent of the spinel structure. In all, these findings give a more complete picture of how (MgNiCuCoZn)0.167(MnCr)0.083O forms with varying initial conditions and advances fundamental knowledge of cation behavior in high entropy oxides.

Original languageEnglish (US)
Article numbere20171
JournalJournal of the American Ceramic Society
Volume108
Issue number2
DOIs
StatePublished - Feb 2025

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Local structure maturation in high entropy oxide (Mg,Co,Ni,Cu,Zn)1-x(Cr,Mn)xO thin films'. Together they form a unique fingerprint.

Cite this