Localizing narrow Fe K α emission within bright AGN

Carolina Andonie, Franz E. Bauer, Rosamaria Carraro, Patricia Arévalo, David M. Alexander, William N. Brandt, Johannes Buchner, Adam He, Michael J. Koss, Claudio Ricci, Vicente Salinas, Manuel Solimano, Alessia Tortosa, Ezequiel Treister

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Context. The 6.4 keV Fe Kα emission line is a ubiquitous feature in X-ray spectra of active galactic nuclei (AGN), and its properties track the interaction between the variable primary X-ray continuum and the surrounding structure from which it arises. Aims. We clarify the nature and origin of the narrow Fe Kα emission using X-ray spectral, timing, and imaging constraints, plus possible correlations to AGN and host galaxy properties, for 38 bright nearby AGN (z < 0:5) from the Burst Alert Telescope AGN Spectroscopic Survey. Methods. Modeling Chandra and XMM-Newton spectra, we computed line full-width half-maxima (FWHMs) and constructed Fe Kα line and 2-10 keV continuum light curves. The FWHM provides one estimate of the Fe Kα emitting region size, RFeKα, assuming virial motion. A second estimate comes from comparing the degree of correlation between the variability of the continuum and line-only light curves, compared to simulated light curves. Finally, we extracted Chandra radial profiles to place upper limits on RFeKα. Results. For 90% (21/24) of AGN with FWHM measurements, RFeKα is smaller than the fiducial dust sublimation radius, Rsub. From timing analysis, 37 and 18 AGN show significant continuum and Fe Kα variability, respectively. Despite a wide range of variability properties, the constraints on the Fe Kα photon reprocessor size independently confirm that RFeKα is smaller than Rsub in 83% of AGN. Finally, the imaging analysis yields loose upper limits for all but two sources; notably, the Circinus Galaxy and NGC 1068 show significant but subdominant extended Fe Kα emission out to ∼100 and ∼800 pc, respectively. Conclusions. Based on independent constraints, we conclude that the majority of the narrow Fe Kα emission in typical AGN predominantly arises from regions smaller than and presumably inside Rsub, and thus it is associated either with the outer broad line region or outer accretion disk. However, the large diversity of continuum and narrow Fe Kα variability properties are not easily accommodated by a universal scenario.

Original languageEnglish (US)
Article numberA46
JournalAstronomy and Astrophysics
Volume664
DOIs
StatePublished - Aug 1 2022

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Localizing narrow Fe K α emission within bright AGN'. Together they form a unique fingerprint.

Cite this