TY - JOUR
T1 - Long-term stability of back-arc basin hydrothermal vents
AU - Du Preez, Cherisse
AU - Fisher, Charles R.
N1 - Funding Information:
We gratefully acknowledge all those who contributed to the success of the Lau Basin monitoring program (2005-2016). Fieldwork was made possible by the expertise of the crews of the R/V Melville, the R/V Thomas G. Thompson, and the R/V Falkor and the crews of Jason II and ROPOS. We thank Arunima Sen, Elizabeth Podowski, and their co-workers for their years of work in Lau Basin, making this study possible. Fanny Girard and Sam Vohsen provided valuable assistance, input, and feedback throughout the study. We thank Molly McGuigan and Alicia Yang for countless hours of help with digitizing and mosaicking. Arunima Sen, Verena Tunnicliffe, Vicki Ferrini, Roxanne Beinart, Peter Girguis, Meg Tivey, and Alison Swaddling shared their expertise and provided insightful comments. At sea activities were carried out with the approval of His Majesty's Cabinet of the Kingdom of Tonga (TN-085-2015 and a diplomatic note from the Ministry of Foreign Affairs and Trade of the Kingdom of Tonga F.7/2/3). This research was supported by the National Science Foundation under Grant Number NSF OCE 1537807.
Publisher Copyright:
© 2018 Du Preez and Fisher.
PY - 2018/2/20
Y1 - 2018/2/20
N2 - Since the discovery of hydrothermal vents 40-years ago, long-term time-series have focused on mid-ocean ridge systems. Based on these studies, hydrothermal vents are widely considered to be dynamic, ephemeral habitats. Under this premise, national, and international regulatory bodies are currently planning for the commercial mining of polymetallic sulfide deposits from hydrothermal vents. However, here we provide evidence of longevity and habitat stability that does not align with historic generalizations. Over a 10-year time-series focused on the back-arc basin systems off the west coast of the Kingdom of Tonga (South Pacific), we find the hydrothermal vents are remarkably stable habitats. Using high-resolution photo mosaics and spatially explicit in situ measurements to document natural changes of five hydrothermal vent edifices, we discovered striking stability in the vent structures themselves, as well as in the composition and coverage of the vent-associated species, with some evidence of microdistribution permanence. These findings challenge the way we think about hydrothermal vent ecosystems and their vulnerability and resilience to deep-sea mining activities.
AB - Since the discovery of hydrothermal vents 40-years ago, long-term time-series have focused on mid-ocean ridge systems. Based on these studies, hydrothermal vents are widely considered to be dynamic, ephemeral habitats. Under this premise, national, and international regulatory bodies are currently planning for the commercial mining of polymetallic sulfide deposits from hydrothermal vents. However, here we provide evidence of longevity and habitat stability that does not align with historic generalizations. Over a 10-year time-series focused on the back-arc basin systems off the west coast of the Kingdom of Tonga (South Pacific), we find the hydrothermal vents are remarkably stable habitats. Using high-resolution photo mosaics and spatially explicit in situ measurements to document natural changes of five hydrothermal vent edifices, we discovered striking stability in the vent structures themselves, as well as in the composition and coverage of the vent-associated species, with some evidence of microdistribution permanence. These findings challenge the way we think about hydrothermal vent ecosystems and their vulnerability and resilience to deep-sea mining activities.
UR - http://www.scopus.com/inward/record.url?scp=85042311085&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042311085&partnerID=8YFLogxK
U2 - 10.3389/fmars.2018.00054
DO - 10.3389/fmars.2018.00054
M3 - Article
AN - SCOPUS:85042311085
SN - 2296-7745
VL - 5
JO - Frontiers in Marine Science
JF - Frontiers in Marine Science
IS - FEB
M1 - 54
ER -