Abstract
Blocking underwater sound waves using sub-wavelength structures, i.e. with the unit size much smaller than the incident wavelength, is a known challenge and highly desirable in practical applications. In this work, we show that this can be easily achieved utilizing the Gibbs-type oscillation properties of finite solid-fluid sonic crystals (SFSCs). First, the influence of solid parameters and the period number of SFSC on the Gibbs-type oscillation within the first Bragg passband is comprehensively investigated. Based on this, isolations with periodic cells of sub-wavelength size are designed and numerically demonstrated through finite element simulations. The results show that the broadband underwater sound blocking effect does exist in a finite SFSC whose total thickness is only one quarter of the incident wavelength, while a very low transmittance of less 1% is achieved. Our work will provide a new approach to control low-frequency underwater sound waves using Bragg sonic crystals.
Original language | English (US) |
---|---|
Article number | 505114 |
Journal | Journal of Physics D: Applied Physics |
Volume | 52 |
Issue number | 50 |
DOIs | |
State | Published - Oct 9 2019 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films