Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail

Daniel T. Dawson, Edward R. Mansell, Youngsun Jung, Louis J. Wicker, Matthew R. Kumjian, Ming Xue

Research output: Contribution to journalArticlepeer-review

117 Scopus citations

Abstract

The low levels of supercell forward flanks commonly exhibit distinct differential reflectivity (ZDR) signatures, including the low-ZDR hail signature and the high-ZDR "arc."The ZDR arc has been previously associated with size sorting of raindrops in the presence of vertical wind shear; here this model is extended to include size sorting of hail. Idealized simulations of a supercell storm observed by the Norman, Oklahoma (KOUN), polarimetric radar on 1 June 2008 are performed using a multimoment bulk microphysics scheme, in which size sorting is allowed or disallowed for hydrometeor species. Several velocity-diameter relationships for the hail fall speed are considered, as well as fixed or variable bulk densities that span the graupel-tohail spectrum. A T-matrix-based emulator is used to derive polarimetric fields from the hydrometeor state variables. Size sorting of hail is found to have a dominant impact on ZDR and can result in a ZDR arc from melting hail even when size sorting is disallowed in the rain field. The low-ZDR hail core only appears when size sorting is allowed for hail. The mean storm-relative wind in a deep layer is found to align closely with the gradient in mean mass diameter of both rain and hail, with a slight shift toward the storm-relative mean wind below the melting level in the case of rain. The best comparison with the observed 1 June 2008 supercell is obtained when both rain and hail are allowed to sort, and the bulk density and associated fall-speed curve for hail are predicted by the model microphysics.

Original languageEnglish (US)
Pages (from-to)276-299
Number of pages24
JournalJournal of the Atmospheric Sciences
Volume71
Issue number1
DOIs
StatePublished - Jan 2014

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail'. Together they form a unique fingerprint.

Cite this