TY - GEN
T1 - Low power Loadless 4T SRAM cell based on degenerately doped source (DDS) In0.53Ga0.47As Tunnel FETs
AU - Saripalli, V.
AU - Mohata, D. K.
AU - Mookerjea, S.
AU - Datta, S.
AU - Narayanan, Vijaykrishnan
PY - 2010
Y1 - 2010
N2 - We propose a Loadless 4T SRAM cell using degenerately doped source (DDS) p-channel In0.53Ga0.47As Tunnel FETs (TFETs) as dual purpose access/load devices and low leakage steep sub-threshold n-channel TFETs as drive devices. A Loadless 4T CMOS SRAM cell [1] has the requirement that the leakage current of the PMOS access transistors should be larger than the leakage current of the NMOS drive transistors to maintain state. In this paper, we introduce a p-type TFET with a degenerately doped source, which has a kT/q sub-threshold slope, compared to an n-type TFET which has a sub-kT/q slope. This difference in sub-threshold behaviour of the DDS PTFET and DDS NTFET helps to maintain the IOFF ratio which is required for cell stability. We explain the temperature dependent sub-threshold characteristics of the In0.53Ga 0.47As (DDS) p-TFET by analyzing the position of the Fermi level in the source of the p-TFET as a function of source doping. Further, the asymmetric source drain architecture of the TFETs is exploited to solve the adjacent bit flip problem of unselected Loadless 4T SRAM cells during a column write operation. Finally, we include a comparison of the leakage energy and cell access time of the TFET based SRAM cell and benchmark its performance relative to state-of-the-art CMOS based 6T SRAM cells.
AB - We propose a Loadless 4T SRAM cell using degenerately doped source (DDS) p-channel In0.53Ga0.47As Tunnel FETs (TFETs) as dual purpose access/load devices and low leakage steep sub-threshold n-channel TFETs as drive devices. A Loadless 4T CMOS SRAM cell [1] has the requirement that the leakage current of the PMOS access transistors should be larger than the leakage current of the NMOS drive transistors to maintain state. In this paper, we introduce a p-type TFET with a degenerately doped source, which has a kT/q sub-threshold slope, compared to an n-type TFET which has a sub-kT/q slope. This difference in sub-threshold behaviour of the DDS PTFET and DDS NTFET helps to maintain the IOFF ratio which is required for cell stability. We explain the temperature dependent sub-threshold characteristics of the In0.53Ga 0.47As (DDS) p-TFET by analyzing the position of the Fermi level in the source of the p-TFET as a function of source doping. Further, the asymmetric source drain architecture of the TFETs is exploited to solve the adjacent bit flip problem of unselected Loadless 4T SRAM cells during a column write operation. Finally, we include a comparison of the leakage energy and cell access time of the TFET based SRAM cell and benchmark its performance relative to state-of-the-art CMOS based 6T SRAM cells.
UR - http://www.scopus.com/inward/record.url?scp=77957597285&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957597285&partnerID=8YFLogxK
U2 - 10.1109/DRC.2010.5551859
DO - 10.1109/DRC.2010.5551859
M3 - Conference contribution
AN - SCOPUS:77957597285
SN - 9781424478705
T3 - Device Research Conference - Conference Digest, DRC
SP - 101
EP - 102
BT - 68th Device Research Conference, DRC 2010
T2 - 68th Device Research Conference, DRC 2010
Y2 - 21 June 2010 through 23 June 2010
ER -