TY - JOUR
T1 - Low temperature recovery of OFF-state stress induced degradation of AlGaN/GaN high electron mobility transistors
AU - Al-Mamun, Nahid Sultan
AU - Sheyfer, Dina
AU - Liu, Wenjun
AU - Haque, Aman
AU - Wolfe, Douglas E.
AU - Pagan, Darren C.
N1 - Publisher Copyright:
© 2024 Author(s).
PY - 2024/1/1
Y1 - 2024/1/1
N2 - Thermal annealing is a widely used strategy to enhance semiconductor device performance. However, the process is complex for multi-material multi-layered semiconductor devices, where thermoelastic stresses from lattice constant and thermal expansion coefficient mismatch may create more defects than those annealed. We propose an alternate low temperature annealing technique, which utilizes the electron wind force (EWF) induced by small duty cycle high density pulsed current. To demonstrate its effectiveness, we intentionally degrade AlGaN/GaN high electron mobility transistors (HEMTs) with accelerated OFF-state stressing to increase ON-resistance ∼182.08% and reduce drain saturation current ∼85.82% of pristine condition at a gate voltage of 0 V. We then performed the EWF annealing to recover the corresponding values back to ∼122.21% and ∼93.10%, respectively. The peak transconductance, degraded to ∼76.58% of pristine at the drain voltage of 3 V, was also recovered back to ∼92.38%. This recovery of previously degraded transport properties is attributed to approximately 80% recovery of carrier mobility, which occurs during EWF annealing. We performed synchrotron differential aperture x-ray microscopy measurements to correlate these annealing effects with the lattice structural changes. We found a reduction of lattice plane spacing of (001) planes and stress within the GaN layer under the gate region after EWF annealing, suggesting a corresponding decrease in defect density. Application of this low-temperature annealing technique for in-operando recovery of degraded electronic devices is discussed.
AB - Thermal annealing is a widely used strategy to enhance semiconductor device performance. However, the process is complex for multi-material multi-layered semiconductor devices, where thermoelastic stresses from lattice constant and thermal expansion coefficient mismatch may create more defects than those annealed. We propose an alternate low temperature annealing technique, which utilizes the electron wind force (EWF) induced by small duty cycle high density pulsed current. To demonstrate its effectiveness, we intentionally degrade AlGaN/GaN high electron mobility transistors (HEMTs) with accelerated OFF-state stressing to increase ON-resistance ∼182.08% and reduce drain saturation current ∼85.82% of pristine condition at a gate voltage of 0 V. We then performed the EWF annealing to recover the corresponding values back to ∼122.21% and ∼93.10%, respectively. The peak transconductance, degraded to ∼76.58% of pristine at the drain voltage of 3 V, was also recovered back to ∼92.38%. This recovery of previously degraded transport properties is attributed to approximately 80% recovery of carrier mobility, which occurs during EWF annealing. We performed synchrotron differential aperture x-ray microscopy measurements to correlate these annealing effects with the lattice structural changes. We found a reduction of lattice plane spacing of (001) planes and stress within the GaN layer under the gate region after EWF annealing, suggesting a corresponding decrease in defect density. Application of this low-temperature annealing technique for in-operando recovery of degraded electronic devices is discussed.
UR - http://www.scopus.com/inward/record.url?scp=85181582553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85181582553&partnerID=8YFLogxK
U2 - 10.1063/5.0179809
DO - 10.1063/5.0179809
M3 - Article
AN - SCOPUS:85181582553
SN - 0003-6951
VL - 124
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 1
M1 - 013507
ER -