TY - GEN
T1 - Lower-Bounds on Public-Key Operations in PIR
AU - Dujmovic, Jesko
AU - Hajiabadi, Mohammad
N1 - Publisher Copyright:
© International Association for Cryptologic Research 2024.
PY - 2024
Y1 - 2024
N2 - Private information retrieval (PIR) is a fundamental cryptographic primitive that allows a user to fetch a database entry without revealing to the server which database entry it learns. PIR becomes non-trivial if the server communication is less than the database size. We show that building (even) very weak forms of PIR protocols requires that the amount of public-key operations scale linearly in the database size. We then use this bound to examine the related problem of communication efficient oblivious transfer (OT) extension. Oblivious transfer is a crucial building block in secure multi-party computation (MPC). In most MPC protocols, OT invocations are the main bottleneck in terms of computation and communication. OT extension techniques allow one to minimize the number of public-key operations in MPC protocols. One drawback of all existing OT extension protocols is their communication overhead. In particular, the sender’s communication is roughly double what is information-theoretically optimal. We show that OT extension with close to optimal sender communication is impossible, illustrating that the communication overhead is inherent. Our techniques go much further; we can show many lower bounds on communication-efficient MPC. E.g. we prove that to build high-rate string OT with generic groups, the sender needs to do linearly many group operations.
AB - Private information retrieval (PIR) is a fundamental cryptographic primitive that allows a user to fetch a database entry without revealing to the server which database entry it learns. PIR becomes non-trivial if the server communication is less than the database size. We show that building (even) very weak forms of PIR protocols requires that the amount of public-key operations scale linearly in the database size. We then use this bound to examine the related problem of communication efficient oblivious transfer (OT) extension. Oblivious transfer is a crucial building block in secure multi-party computation (MPC). In most MPC protocols, OT invocations are the main bottleneck in terms of computation and communication. OT extension techniques allow one to minimize the number of public-key operations in MPC protocols. One drawback of all existing OT extension protocols is their communication overhead. In particular, the sender’s communication is roughly double what is information-theoretically optimal. We show that OT extension with close to optimal sender communication is impossible, illustrating that the communication overhead is inherent. Our techniques go much further; we can show many lower bounds on communication-efficient MPC. E.g. we prove that to build high-rate string OT with generic groups, the sender needs to do linearly many group operations.
UR - http://www.scopus.com/inward/record.url?scp=85193640177&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85193640177&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-58751-1_3
DO - 10.1007/978-3-031-58751-1_3
M3 - Conference contribution
AN - SCOPUS:85193640177
SN - 9783031587504
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 65
EP - 87
BT - Advances in Cryptology – EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2024, Proceedings
A2 - Joye, Marc
A2 - Leander, Gregor
PB - Springer Science and Business Media Deutschland GmbH
T2 - 43rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2024
Y2 - 26 May 2024 through 30 May 2024
ER -