TY - GEN
T1 - Lpv representation of unsteady aerodynamics and stall
AU - Farrell, Wayne W.
AU - Kinzel, Michael P.
N1 - Publisher Copyright:
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Developing an aerodynamic system model adequate for control system design and testing is traditionally expensive and time intensive. Costs are associated with producing underlying aerodynamic models that require extensive wind tunnel testing or linearized abstractions of first-principle, aerodynamic-force analysis; both approaches leave room for improvement in terms of the cost, development time, and accuracy of the aerodynamic models. In the present work, an affine-linear parameter-varying model for aerodynamic loading of a 1-DOF flat plate is developed. Specifically, the flat plate loading is approximated using a lower-order, compact system model with calibration and evaluation over range of prescribed motions. These motions include aggressive pitch-hold motions as well as certain nonlinear aerodynamic effects such as light-moderate static at Re ~100000. It is believed that the findings from a flat plate can be later extended to similar models to design control systems for more complex systems.
AB - Developing an aerodynamic system model adequate for control system design and testing is traditionally expensive and time intensive. Costs are associated with producing underlying aerodynamic models that require extensive wind tunnel testing or linearized abstractions of first-principle, aerodynamic-force analysis; both approaches leave room for improvement in terms of the cost, development time, and accuracy of the aerodynamic models. In the present work, an affine-linear parameter-varying model for aerodynamic loading of a 1-DOF flat plate is developed. Specifically, the flat plate loading is approximated using a lower-order, compact system model with calibration and evaluation over range of prescribed motions. These motions include aggressive pitch-hold motions as well as certain nonlinear aerodynamic effects such as light-moderate static at Re ~100000. It is believed that the findings from a flat plate can be later extended to similar models to design control systems for more complex systems.
UR - http://www.scopus.com/inward/record.url?scp=85091934386&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091934386&partnerID=8YFLogxK
U2 - 10.2514/6.2020-1534
DO - 10.2514/6.2020-1534
M3 - Conference contribution
AN - SCOPUS:85091934386
SN - 9781624105951
T3 - AIAA Scitech 2020 Forum
BT - AIAA Scitech 2020 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Scitech Forum, 2020
Y2 - 6 January 2020 through 10 January 2020
ER -