Abstract
For a nilmanifold G/γ, a 1-Lipschitz continuous function F and the Möbius sequence μ(n), we prove a bound on the decay of the averaged short interval correlation 1 HN Σ n≤N lΣ h≤H μ(n + h)F(gn+hx)l as H,N →∞. The bound is uniform in g ∈ G, x ∈ G/γ and F.
Original language | English (US) |
---|---|
Pages (from-to) | 3881-3917 |
Number of pages | 37 |
Journal | Transactions of the American Mathematical Society |
Volume | 374 |
Issue number | 6 |
DOIs | |
State | Published - 2021 |
All Science Journal Classification (ASJC) codes
- General Mathematics
- Applied Mathematics