Machine learning-based dual-energy CT parametric mapping

Kuan Hao Su, Jung Wen Kuo, David W. Jordan, Steven Van Hedent, Paul Klahr, Zhouping Wei, Rose Al Helo, Fan Liang, Pengjiang Qian, Gisele C. Pereira, Negin Rassouli, Robert C. Gilkeson, Bryan J. Traughber, Chee Wai Cheng, Raymond F. Muzic

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρ e), mean excitation energy (I x), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 s. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency.

Original languageEnglish (US)
Article number125001
JournalPhysics in Medicine and Biology
Issue number12
StatePublished - Jun 8 2018

All Science Journal Classification (ASJC) codes

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Machine learning-based dual-energy CT parametric mapping'. Together they form a unique fingerprint.

Cite this