TY - JOUR
T1 - Machine Learning for Precision Breast Cancer Diagnosis and Prediction of the Nanoparticle Cellular Internalization
AU - Alafeef, Maha
AU - Srivastava, Indrajit
AU - Pan, Dipanjan
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/6/26
Y1 - 2020/6/26
N2 - In the field of theranostics, diagnostic nanoparticles are designed to collect highly patient-selective disease profiles, which is then leveraged by a set of nanotherapeutics to improve the therapeutic results. Despite their early promise, high interpatient and intratumoral heterogeneities make any rational design and analysis of these theranostics platforms extremely problematic. Recent advances in deep-learning-based tools may help bridge this gap, using pattern recognition algorithms for better diagnostic precision and therapeutic outcome. Triple-negative breast cancer (TNBC) is a conundrum because of the complex molecular diversity, making its diagnosis and therapy challenging. To address these challenges, we propose a method to predict the cellular internalization of nanoparticles (NPs) against different cancer stages using artificial intelligence. Here, we demonstrate for the first time that a combination of machine-learning (ML) algorithm and characteristic cellular uptake responses for individual cancer cell types can be successfully used to classify various cancer cell types. Utilizing this approach, we can optimize the nanomaterials to get an optimum structure-internalization response for a given particle. This methodology predicted the structure-internalization response of the evaluated nanoparticles with remarkable accuracy (Q2 = 0.9). We anticipate that it can reduce the effort by minimizing the number of nanoparticles that need to be tested and could be utilized as a screening tool for designing nanotherapeutics. Following this, we have proposed a diagnostic nanomaterial-based platform used to assemble a patient-specific cancer profile with the assistance of machine learning (ML). The platform is composed of eight carbon nanoparticles (CNPs) with multifarious surface chemistries that can differentiate healthy breast cells from cancerous cells and then subclassify TNBC cells vs non-TNBC cells, within the TNBC group. The artificial neural network (ANN) algorithm has been successfully used in identifying the type of cancer cells from 36 unknown cancer samples with an overall accuracy of >98%, providing potential applications in cancer diagnostics.
AB - In the field of theranostics, diagnostic nanoparticles are designed to collect highly patient-selective disease profiles, which is then leveraged by a set of nanotherapeutics to improve the therapeutic results. Despite their early promise, high interpatient and intratumoral heterogeneities make any rational design and analysis of these theranostics platforms extremely problematic. Recent advances in deep-learning-based tools may help bridge this gap, using pattern recognition algorithms for better diagnostic precision and therapeutic outcome. Triple-negative breast cancer (TNBC) is a conundrum because of the complex molecular diversity, making its diagnosis and therapy challenging. To address these challenges, we propose a method to predict the cellular internalization of nanoparticles (NPs) against different cancer stages using artificial intelligence. Here, we demonstrate for the first time that a combination of machine-learning (ML) algorithm and characteristic cellular uptake responses for individual cancer cell types can be successfully used to classify various cancer cell types. Utilizing this approach, we can optimize the nanomaterials to get an optimum structure-internalization response for a given particle. This methodology predicted the structure-internalization response of the evaluated nanoparticles with remarkable accuracy (Q2 = 0.9). We anticipate that it can reduce the effort by minimizing the number of nanoparticles that need to be tested and could be utilized as a screening tool for designing nanotherapeutics. Following this, we have proposed a diagnostic nanomaterial-based platform used to assemble a patient-specific cancer profile with the assistance of machine learning (ML). The platform is composed of eight carbon nanoparticles (CNPs) with multifarious surface chemistries that can differentiate healthy breast cells from cancerous cells and then subclassify TNBC cells vs non-TNBC cells, within the TNBC group. The artificial neural network (ANN) algorithm has been successfully used in identifying the type of cancer cells from 36 unknown cancer samples with an overall accuracy of >98%, providing potential applications in cancer diagnostics.
UR - http://www.scopus.com/inward/record.url?scp=85087110721&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087110721&partnerID=8YFLogxK
U2 - 10.1021/acssensors.0c00329
DO - 10.1021/acssensors.0c00329
M3 - Article
C2 - 32466640
AN - SCOPUS:85087110721
SN - 2379-3694
VL - 5
SP - 1689
EP - 1698
JO - ACS Sensors
JF - ACS Sensors
IS - 6
ER -