Machine learning for prediction with missing dynamics

John Harlim, Shixiao W. Jiang, Senwei Liang, Haizhao Yang

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

This article presents a general framework for recovering missing dynamical systems using available data and machine learning techniques. The proposed framework reformulates the prediction problem as a supervised learning problem to approximate a map that takes the memories of the resolved and identifiable unresolved variables to the missing components in the resolved dynamics. We demonstrate the effectiveness of the proposed framework with a strong convergence error bound of the resolved variables up to finite time and numerical tests on prototypical models in various scientific domains. These include the 57-mode barotropic stress models with multiscale interactions that mimic the blocked and unblocked patterns observed in the atmosphere, the nonlinear Schrödinger equation which found many applications in physics such as optics and Bose-Einstein-Condense, the Kuramoto-Sivashinsky equation which spatiotemporal chaotic pattern formation models trapped-ion modes in plasma and phase dynamics in reaction-diffusion systems. While many machine learning techniques can be used to validate the proposed framework, we found that recurrent neural networks outperform kernel regression methods in terms of recovering the trajectory of the resolved components and the equilibrium one-point and two-point statistics. This superb performance suggests that a recurrent neural network is an effective tool for recovering the missing dynamics that involves approximation of high-dimensional functions.

Original languageEnglish (US)
Article number109922
JournalJournal of Computational Physics
Volume428
DOIs
StatePublished - Mar 1 2021

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • Modeling and Simulation
  • Physics and Astronomy (miscellaneous)
  • General Physics and Astronomy
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Machine learning for prediction with missing dynamics'. Together they form a unique fingerprint.

Cite this