Macro- To nanoscale wear prevention via molecular adsorption

David B. Asay, Michael T. Dugger, James A. Ohlhausen, Seong H. Kim

Research output: Contribution to journalArticlepeer-review

105 Scopus citations

Abstract

As the size of mechanical systems shrinks from macro- to nanoscales, surface phenomena such as adhesion, friction, and wear become increasingly significant. This paper demonstrates the use of alcohol adsorption as a means of continuously replenishing the lubricating layer on the working device surfaces and elucidates the tribochemical reaction products formed in the sliding contact region. Friction and wear of native silicon oxide were studied over a wide range of length scales from macro- to nanoscales using a ball-on-flat tribometer (millimeter scale), sidewall microelectromechanical system (MEMS) tribometer (micrometer scale), and atomic force microscopy (nanometer scale). In all cases, the alcohol vapor adsorption successfully lubricated and prevented wear. Imaging time-of-flight secondary ion mass spectrometry analysis of the sliding contact region revealed that high molecular weight oligomeric species were formed via tribochemical reactions of the adsorbed linear alcohol molecules. These tribochemical products seemed to enhance the lubrication and wear prevention. In the case of sidewall MEMS tests, the lifetime of the MEMS device was radically increased via vapor-phase lubrication with alcohol.

Original languageEnglish (US)
Pages (from-to)155-159
Number of pages5
JournalLangmuir
Volume24
Issue number1
DOIs
StatePublished - Jan 1 2008

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Macro- To nanoscale wear prevention via molecular adsorption'. Together they form a unique fingerprint.

Cite this