Maghemite, silver, ceragenin conjugate particles for selective binding and contrast of bacteria

Mark A. Hoppens, Zaanan E.W. Wheeler, Ammar T. Qureshi, Katie Hogan, Ashleigh Wright, George G. Stanley, David Young, Paul Savage, Daniel Hayes

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


New synthesis techniques are providing increasing control over many inorganic nanoparticle characteristics, facilitating the creation of new multifunctional theranostics. This report proposes the synthesis and testing of a combination nanoparticle comprised of a maghemite core for enhanced T2 MRI contrast diagnostics, a colloidal silver shell acting as an antimicrobial and therapeutic vehicle, and a ceragenin (CSA-124) surfactant providing microbial adhesion. A polyacrylic acid functionalized maghemite nanoparticle is synthesized by a high temperature organic phase reduction followed by thiol functionalization and gold cluster seeding. A silver shell is formed through AgNO3 reduction, and an oriented monolayer of the thiolated ceragenin, is bound through a self-assembly process. The process and products are characterized throughout synthesis through TEM, DLS, FT-IR, UV-Vis, ICP-OES, HPLC-ESI-TOF-MS, DC magnetization and susceptibility, X-ray diffraction, and in vitro MRI. Synthesized Diagnostic Antimicrobial Nanoparticles (DANs) were found to have a spherical morphology with a diameter of 32.47±1.83nm, hydrodynamic diameter of 53.05±1.20nm, maximum magnetic moment of 12emu/g NP (54emu/g Fe) with little variation due to temperature, and are predominantly paramagnetic. In vitro MRI studies show that DANs contrast well at concentrations as low as 9ppm, and successfully adhere to Staphylococcus aureus. DAN MIC was determined to be approximately 12ppm and 24ppm against S. aureus and Escherichia coli respectively.

Original languageEnglish (US)
Pages (from-to)167-174
Number of pages8
JournalJournal of Colloid And Interface Science
StatePublished - Jan 1 2014

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Colloid and Surface Chemistry


Dive into the research topics of 'Maghemite, silver, ceragenin conjugate particles for selective binding and contrast of bacteria'. Together they form a unique fingerprint.

Cite this