TY - JOUR
T1 - Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives
AU - Lu, Xili
AU - Shi, Sanjun
AU - Li, Hanmei
AU - Gerhard, Ethan
AU - Lu, Zhihui
AU - Tan, Xinyu
AU - Li, Wenliang
AU - Rahn, Kevin M.
AU - Xie, Denghui
AU - Xu, Guodong
AU - Zou, Fang
AU - Bai, Xiaochun
AU - Guo, Jinshan
AU - Yang, Jian
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2020/2
Y1 - 2020/2
N2 - Tissue adhesives are commonly used in surgeries and regenerative engineering for the repair and regeneration of topical and internal wounds on tissues and organs such as skin, heart, blood vessels, and bone. However, achieving rapid crosslinking, strong wet adhesion and cohesion strengths, and minimal cytotoxicity remains a critical roadblock for clinical translation. Herein, in contrast to harsh and cytotoxic oxidants, magnesium oxide (MgO) particles were found to facilitate rapid crosslinking for injectable citrate-based mussel-inspired tissue bioadhesives synthesized by reacting citric acid, PEG-PPG-PEG diol and dopamine (iC-EPE). Our results confirmed the role of MgO particles as both crosslinkers and composite fillers to concurrently enhance bioadhesive cohesion and adhesion. iC-EPE crosslinked by MgO with/without sodium periodate (PI) exhibit enhanced mechanical strengths (1.0 Mpa < tensile strength ≤ 4.5 MPa) compared to that of iC-EPE crosslinked only by PI (~0.75 MPa), high adhesion strength (up to 125 kPa, 8 fold that of fibrin glue (~15 kPa)), tunable degradability (full degradation from <1 week to > 1 month), excellent in vitro and in vivo biocompatibility, encouraging anti-bacterial performance, and favorable wound closure efficacy. Thus, MgO crosslinked bioadhesives possess great potential for a wide range of applications in surgery and regenerative engineering.
AB - Tissue adhesives are commonly used in surgeries and regenerative engineering for the repair and regeneration of topical and internal wounds on tissues and organs such as skin, heart, blood vessels, and bone. However, achieving rapid crosslinking, strong wet adhesion and cohesion strengths, and minimal cytotoxicity remains a critical roadblock for clinical translation. Herein, in contrast to harsh and cytotoxic oxidants, magnesium oxide (MgO) particles were found to facilitate rapid crosslinking for injectable citrate-based mussel-inspired tissue bioadhesives synthesized by reacting citric acid, PEG-PPG-PEG diol and dopamine (iC-EPE). Our results confirmed the role of MgO particles as both crosslinkers and composite fillers to concurrently enhance bioadhesive cohesion and adhesion. iC-EPE crosslinked by MgO with/without sodium periodate (PI) exhibit enhanced mechanical strengths (1.0 Mpa < tensile strength ≤ 4.5 MPa) compared to that of iC-EPE crosslinked only by PI (~0.75 MPa), high adhesion strength (up to 125 kPa, 8 fold that of fibrin glue (~15 kPa)), tunable degradability (full degradation from <1 week to > 1 month), excellent in vitro and in vivo biocompatibility, encouraging anti-bacterial performance, and favorable wound closure efficacy. Thus, MgO crosslinked bioadhesives possess great potential for a wide range of applications in surgery and regenerative engineering.
UR - http://www.scopus.com/inward/record.url?scp=85078726731&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078726731&partnerID=8YFLogxK
U2 - 10.1016/j.biomaterials.2019.119719
DO - 10.1016/j.biomaterials.2019.119719
M3 - Article
C2 - 31901688
AN - SCOPUS:85078726731
SN - 0142-9612
VL - 232
JO - Biomaterials
JF - Biomaterials
M1 - 119719
ER -