Magnetic properties of [FeFe]-hydrogenases: A theoretical investigation based on extended QM and QM/MM models of the H-cluster and its surroundings

Claudio Greco, Alexey Silakov, Maurizio Bruschi, Ulf Ryde, Luca De Gioia, Wolfgang Lubitz

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

In the present contribution, we report a theoretical investigation of the magnetic properties of the dihydrogen-evolving enzyme [FeFe]-hydrogenase, based on both DFT models of the active site (the H-cluster, a Fe6S 6 assembly including a binuclear portion directly involved in substrates binding), and QM/MM models of the whole enzyme. Antiferromagnetic coupling within the H-cluster has been treated using the broken-symmetry approach, along with the use of different density functionals. Results of g value calculations turned out to vary as a function of the level of theory and of the extension of the model. The choice of the broken-symmetry coupling scheme also had a significant influence on the calculated g values, for both the active-ready (Hox) and the CO-inhibited (Hox-CO) enzyme forms. However, hyperfine coupling-constant calculations were found to provide more consistent results. This allowed us to show that the experimentally detected delocalization of an unpaired electron at the binuclear subcluster in Desulfovibrio desulfuricans Hox is compatible with a weak interaction between the catalytic centre and a low-weight exogenous ligand like a water molecule.

Original languageEnglish (US)
Pages (from-to)1043-1049
Number of pages7
JournalEuropean Journal of Inorganic Chemistry
Issue number7
DOIs
StatePublished - Mar 2011

All Science Journal Classification (ASJC) codes

  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Magnetic properties of [FeFe]-hydrogenases: A theoretical investigation based on extended QM and QM/MM models of the H-cluster and its surroundings'. Together they form a unique fingerprint.

Cite this