TY - JOUR
T1 - Manganese accumulation in the olfactory bulbs and other brain regions of "asymptomatic" welders
AU - Sen, Suman
AU - Flynn, Michael R.
AU - Du, Guangwei
AU - Tröster, Alexander I.
AU - An, Hongyu
AU - Huang, Xuemei
N1 - Funding Information:
National Institute of Environmental Health Sciences (T32ES07018; University of North Carolina, Department of Biostatistics); National Institute of Neurological Disorders and Stroke (NS060722; Pennsylvania State University, Department of Neurology); General Clinical Research Center Grant from National Institutes of Health (M01RR10732), and General Clinical Research Center Construction Grant (C06RR016499), Pennsylvania State University, College of Medicine.
PY - 2011/5
Y1 - 2011/5
N2 - Welding-generated metallic fumes contain a substantial amount of manganese (Mn), making welders susceptible to Mn toxicity. Although overt Mn toxicity manifests as a type of parkinsonism, the consequences of chronic, low-level Mn exposure are unknown. To explore region-specific Mn accumulation and its potential functional consequences at subclinical levels of Mn exposure, we studied seven welders without obvious neurological deficits and seven age- and gender-matched controls. Mn exposure for welders was estimated by an occupational questionnaire. High-resolution brain magnetic resonance imaging (MRI), Grooved Pegboard performance of both hands, Trail making, and olfactory function tests were obtained from all subjects. Compared with controls, the welders had a significantly higher T1 relaxation rate (R1) in the olfactory bulb (OB, p = 0.02), mean T1-weighted intensity at frontal white matter (FWM; p = 0.01), bilateral globus pallidus (GP; p = 0.03), and putamen (p = 0.03). The welders scored worse than the controls on the Grooved Pegboard test for both dominant (p = 0.06) and nondominant hand (p = 0.03). The dominant hand Grooved Pegboard scores correlated best with mean MRI intensity of FWM (R2 = 0.51, p = 0.004), GP (R2 = 0.51, p = 0.004), putamen (R2 = 0.49, p= 0.006), and frontal gray matter (R2 = 0.42, p = 0.01), whereas the nondominant hand scores correlated best with intensity of FWM (R2 = 0.37, p = 0.02) and GP (R2 = 0.28, p = 0.05). No statistical differences were observed in either the Trail-making test or the olfactory test between the two groups. This study suggests that Mn accumulates in OB and multiple other brain regions in "asymptomatic" welders and that MRI abnormalities correlate with fine motor but not cognitive deficits. Further investigations of subclinical Mn exposure are warranted.
AB - Welding-generated metallic fumes contain a substantial amount of manganese (Mn), making welders susceptible to Mn toxicity. Although overt Mn toxicity manifests as a type of parkinsonism, the consequences of chronic, low-level Mn exposure are unknown. To explore region-specific Mn accumulation and its potential functional consequences at subclinical levels of Mn exposure, we studied seven welders without obvious neurological deficits and seven age- and gender-matched controls. Mn exposure for welders was estimated by an occupational questionnaire. High-resolution brain magnetic resonance imaging (MRI), Grooved Pegboard performance of both hands, Trail making, and olfactory function tests were obtained from all subjects. Compared with controls, the welders had a significantly higher T1 relaxation rate (R1) in the olfactory bulb (OB, p = 0.02), mean T1-weighted intensity at frontal white matter (FWM; p = 0.01), bilateral globus pallidus (GP; p = 0.03), and putamen (p = 0.03). The welders scored worse than the controls on the Grooved Pegboard test for both dominant (p = 0.06) and nondominant hand (p = 0.03). The dominant hand Grooved Pegboard scores correlated best with mean MRI intensity of FWM (R2 = 0.51, p = 0.004), GP (R2 = 0.51, p = 0.004), putamen (R2 = 0.49, p= 0.006), and frontal gray matter (R2 = 0.42, p = 0.01), whereas the nondominant hand scores correlated best with intensity of FWM (R2 = 0.37, p = 0.02) and GP (R2 = 0.28, p = 0.05). No statistical differences were observed in either the Trail-making test or the olfactory test between the two groups. This study suggests that Mn accumulates in OB and multiple other brain regions in "asymptomatic" welders and that MRI abnormalities correlate with fine motor but not cognitive deficits. Further investigations of subclinical Mn exposure are warranted.
UR - http://www.scopus.com/inward/record.url?scp=79955387706&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955387706&partnerID=8YFLogxK
U2 - 10.1093/toxsci/kfr033
DO - 10.1093/toxsci/kfr033
M3 - Article
C2 - 21307282
AN - SCOPUS:79955387706
SN - 1096-6080
VL - 121
SP - 160
EP - 167
JO - Toxicological Sciences
JF - Toxicological Sciences
IS - 1
ER -