TY - JOUR
T1 - Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein
AU - Harischandra, Dilshan S.
AU - Rokad, Dharmin
AU - Neal, Matthew L.
AU - Ghaisas, Shivani
AU - Manne, Sireesha
AU - Sarkar, Souvarish
AU - Panicker, Nikhil
AU - Zenitsky, Gary
AU - Jin, Huajun
AU - Lewis, Mechelle
AU - Huang, Xuemei
AU - Anantharam, Vellareddy
AU - Kanthasamy, Arthi
AU - Kanthasamy, Anumantha G.
N1 - Funding Information:
This work was supported by National Institutes of Health R01 grants (ES026892, ES019267, and ES025991 to A.G.K. and NS088206 to A.K.). The W. Eugene and Linda Lloyd Endowed Chair and Armbrust Endowment to A.G.K. and Syngenta Fellowship Award in Human Health Applications of New Technologies to D.S.H. are also acknowledged.
Publisher Copyright:
Copyright © 2019 The Authors, some rights reserved.
PY - 2019
Y1 - 2019
N2 - The aggregation of α-synuclein (αSyn) is considered a key pathophysiological feature of certain neurodegenerative disorders, collectively termed synucleinopathies. Given that a prion-like, cell-to-cell transfer of misfolded αSyn has been recognized in the spreading of αSyn pathology in synucleinopathies, we investigated the biological mechanisms underlying the propagation of the disease with respect to environmental neurotoxic stress. Considering the potential role of the divalent metal manganese (Mn 2+ ) in protein aggregation, we characterized its effect on αSyn misfolding and transmission in experimental models of Parkinson's disease. In cultured dopaminergic neuronal cells stably expressing wild-type human αSyn, misfolded αSyn was secreted through exosomes into the extracellular medium upon Mn 2+ exposure. These exosomes were endocytosed through caveolae into primary microglial cells, thereby mounting neuroinflammatory responses. Furthermore, Mn 2+ -elicited exosomes exerted a neurotoxic effect in a human dopaminergic neuronal model (LUHMES cells). Moreover, bimolecular fluorescence complementation (BiFC) analysis revealed that Mn 2+ accelerated the cell-to-cell transmission of αSyn, resulting in dopaminergic neurotoxicity in a mouse model of Mn 2+ exposure. Welders exposed to Mn 2+ had increased misfolded αSyn content in their serum exosomes. Stereotaxically delivering αSyn-containing exosomes, isolated from Mn 2+ -treated αSyn-expressing cells, into the striatum initiated Parkinsonian-like pathological features in mice. Together, these results indicate that Mn 2+ exposure promotes αSyn secretion in exosomal vesicles, which subsequently evokes proinflammatory and neurodegenerative responses in both cell culture and animal models.
AB - The aggregation of α-synuclein (αSyn) is considered a key pathophysiological feature of certain neurodegenerative disorders, collectively termed synucleinopathies. Given that a prion-like, cell-to-cell transfer of misfolded αSyn has been recognized in the spreading of αSyn pathology in synucleinopathies, we investigated the biological mechanisms underlying the propagation of the disease with respect to environmental neurotoxic stress. Considering the potential role of the divalent metal manganese (Mn 2+ ) in protein aggregation, we characterized its effect on αSyn misfolding and transmission in experimental models of Parkinson's disease. In cultured dopaminergic neuronal cells stably expressing wild-type human αSyn, misfolded αSyn was secreted through exosomes into the extracellular medium upon Mn 2+ exposure. These exosomes were endocytosed through caveolae into primary microglial cells, thereby mounting neuroinflammatory responses. Furthermore, Mn 2+ -elicited exosomes exerted a neurotoxic effect in a human dopaminergic neuronal model (LUHMES cells). Moreover, bimolecular fluorescence complementation (BiFC) analysis revealed that Mn 2+ accelerated the cell-to-cell transmission of αSyn, resulting in dopaminergic neurotoxicity in a mouse model of Mn 2+ exposure. Welders exposed to Mn 2+ had increased misfolded αSyn content in their serum exosomes. Stereotaxically delivering αSyn-containing exosomes, isolated from Mn 2+ -treated αSyn-expressing cells, into the striatum initiated Parkinsonian-like pathological features in mice. Together, these results indicate that Mn 2+ exposure promotes αSyn secretion in exosomal vesicles, which subsequently evokes proinflammatory and neurodegenerative responses in both cell culture and animal models.
UR - http://www.scopus.com/inward/record.url?scp=85062880985&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062880985&partnerID=8YFLogxK
U2 - 10.1126/scisignal.aau4543
DO - 10.1126/scisignal.aau4543
M3 - Article
C2 - 30862700
AN - SCOPUS:85062880985
SN - 1945-0877
VL - 12
JO - Science signaling
JF - Science signaling
IS - 572
M1 - eaau4543
ER -