Manual asymmetries in bimanual reaching: The influence of spatial compatibility and visuospatial attention

Kristina Neely, Gordon Binsted, Matthew Heath

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

The goal of the present investigation was to explore the possible expression of hemispheric-specific processing during the planning and execution of a bimanual reaching task. Participants (N = 9) completed 80 bimanual reaching movements (requiring simultaneous, bilateral production of arm movements) to peripherally presented targets while selectively attending to either their left or right hand. Further, targets were presented in spatially compatible (ipsilateral to the aiming limb) and incompatible (contralateral to the aiming limb) response contexts. It was found that the left hand exhibited temporal superiority over the right hand in the response planning phase of bimanual reaching, indicating a left hand/right hemisphere advantage in the preparation of a bimanual response. During response execution, and consistent with the view that interhemispheric processing time (Barthelemy & Boulinguez, 2002) or biomechanical constraints (Carey, Hargreaves, & Goodale, 1996) generate temporal delays, longer movement times were observed in response to spatially incompatible target positions. However, no hemisphere-specific benefit was demonstrated for response execution. Based on these findings, we propose lateralized processing is present at the time of response planning (i.e., left hand/right hemisphere processing advantage); however, lateralized specialization appears to be annulled during dynamic execution of a bimanual reaching task.

Original languageEnglish (US)
Pages (from-to)102-105
Number of pages4
JournalBrain and cognition
Volume57
Issue number1
DOIs
StatePublished - Feb 2005

All Science Journal Classification (ASJC) codes

  • Neuropsychology and Physiological Psychology
  • Experimental and Cognitive Psychology
  • Developmental and Educational Psychology
  • Arts and Humanities (miscellaneous)
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Manual asymmetries in bimanual reaching: The influence of spatial compatibility and visuospatial attention'. Together they form a unique fingerprint.

Cite this