TY - JOUR
T1 - Mapping stress networks using functional magnetic resonance imaging in awake animals
AU - Dopfel, David
AU - Zhang, Nanyin
N1 - Funding Information:
The present study was partially supported by National Institute of Neurological Disorders and Stroke Grant R01NS085200 (PI: Nanyin Zhang, PhD) and National Institute of Mental Health Grant R01MH098003 and RF1MH114224 (PI: Nanyin Zhang, PhD).
Publisher Copyright:
© 2018 The Authors
PY - 2018/11
Y1 - 2018/11
N2 - The neurobiology of stress is studied through behavioral neuroscience, endocrinology, neuronal morphology and neurophysiology. There is a shift in focus toward progressive changes throughout stress paradigms and individual susceptibility to stress that requires methods that allow for longitudinal study design and study of individual differences in stress response. Functional magnetic resonance imaging (fMRI), with the advantages of noninvasiveness and a large field of view, can be used for functionally mapping brain-wide regions and circuits critical to the stress response, making it suitable for longitudinal studies and understanding individual variability of short-term and long-term consequences of stress exposure. In addition, fMRI can be applied to both animals and humans, which is highly valuable in translating findings across species and examining whether the physiology and neural circuits involved in the stress response are conserved in mammals. However, compared to human fMRI studies, there are a number of factors that are essential for the success of fMRI studies in animals. This review discussed the use of fMRI in animal studies of stress. It reviewed advantages, challenges and technical considerations of the animal fMRI methodology as well as recent literature of stress studies using fMRI in animals. It also highlighted the development of combining fMRI with other methods and the future potential of fMRI in animal studies of stress. We conclude that animal fMRI studies, with their flexibility, low cost and short time frame compared to human studies, are crucial to advancing our understanding of the neurobiology of stress.
AB - The neurobiology of stress is studied through behavioral neuroscience, endocrinology, neuronal morphology and neurophysiology. There is a shift in focus toward progressive changes throughout stress paradigms and individual susceptibility to stress that requires methods that allow for longitudinal study design and study of individual differences in stress response. Functional magnetic resonance imaging (fMRI), with the advantages of noninvasiveness and a large field of view, can be used for functionally mapping brain-wide regions and circuits critical to the stress response, making it suitable for longitudinal studies and understanding individual variability of short-term and long-term consequences of stress exposure. In addition, fMRI can be applied to both animals and humans, which is highly valuable in translating findings across species and examining whether the physiology and neural circuits involved in the stress response are conserved in mammals. However, compared to human fMRI studies, there are a number of factors that are essential for the success of fMRI studies in animals. This review discussed the use of fMRI in animal studies of stress. It reviewed advantages, challenges and technical considerations of the animal fMRI methodology as well as recent literature of stress studies using fMRI in animals. It also highlighted the development of combining fMRI with other methods and the future potential of fMRI in animal studies of stress. We conclude that animal fMRI studies, with their flexibility, low cost and short time frame compared to human studies, are crucial to advancing our understanding of the neurobiology of stress.
UR - http://www.scopus.com/inward/record.url?scp=85049334194&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049334194&partnerID=8YFLogxK
U2 - 10.1016/j.ynstr.2018.06.002
DO - 10.1016/j.ynstr.2018.06.002
M3 - Review article
C2 - 30450389
AN - SCOPUS:85049334194
SN - 2352-2895
VL - 9
SP - 251
EP - 263
JO - Neurobiology of Stress
JF - Neurobiology of Stress
ER -