TY - JOUR
T1 - Mapping the osteocytic cell response to fluid flow using RNA-Seq
AU - Govey, Peter M.
AU - Kawasawa, Yuka Imamura
AU - Donahue, Henry J.
N1 - Publisher Copyright:
© 2015 Elsevier Ltd.
PY - 2015/12/16
Y1 - 2015/12/16
N2 - Bone adaptation to mechanical loading is regulated via signal transduction by mechano-sensing osteocytes. Mineral-embedded osteocytes experience strain-induced interstitial fluid flow and fluid shear stress, and broad shifts in gene expression are key components in the signaling pathways that regulate bone turnover. RNA sequencing analysis, or RNA-Seq, enables more complete characterization of mechano-responsive transcriptome regulation than previously possible. We hypothesized that RNA-Seq of osteocytic MLO-Y4 cells reveals both expected and novel gene transcript regulation in cells previously fluid flowed and analyzed using gene microarrays. MLO-Y4 cells were flowed for 2 h with 1 Pa oscillating fluid shear stress and post-incubated 2 h. RNA-Seq of original samples detected 55 fluid flow-regulated gene transcripts (p-corrected <0.05), the same number previously detected by microarray. However, RNA-Seq demonstrated greater dynamic range, with all 55 transcripts increased >1.5-fold or decreased <0.67-fold whereas 10 of 55 met this cut-off by microarray. Analyses were complimentary in patterns of regulation, though only 6 transcripts were significant in both RNA-Seq and microarray analyses: Cxcl5, Cxcl1, Zc3h12a, Ereg, Slc2a1, and Egln1. As part of a broad inflammatory response inferred by gene ontology analyses, we again observed greatest up-regulation of inflammatory C-X-C motif chemokines, and newly implicated HIF-1α and AMPK signaling pathways. Importantly, we detected both expected fluid flow-sensitive transcripts (e.g. Nos2 [iNOS], Ptgs2 [COX-2], Ccl7) and transcripts not previously identified as flow-sensitive, e.g. Ccl2. We found RNA-Seq advantageous over microarrays because of its greater dynamic range and ability to analyze unbiased estimation of gene expression, informing our understanding of osteocyte signaling.
AB - Bone adaptation to mechanical loading is regulated via signal transduction by mechano-sensing osteocytes. Mineral-embedded osteocytes experience strain-induced interstitial fluid flow and fluid shear stress, and broad shifts in gene expression are key components in the signaling pathways that regulate bone turnover. RNA sequencing analysis, or RNA-Seq, enables more complete characterization of mechano-responsive transcriptome regulation than previously possible. We hypothesized that RNA-Seq of osteocytic MLO-Y4 cells reveals both expected and novel gene transcript regulation in cells previously fluid flowed and analyzed using gene microarrays. MLO-Y4 cells were flowed for 2 h with 1 Pa oscillating fluid shear stress and post-incubated 2 h. RNA-Seq of original samples detected 55 fluid flow-regulated gene transcripts (p-corrected <0.05), the same number previously detected by microarray. However, RNA-Seq demonstrated greater dynamic range, with all 55 transcripts increased >1.5-fold or decreased <0.67-fold whereas 10 of 55 met this cut-off by microarray. Analyses were complimentary in patterns of regulation, though only 6 transcripts were significant in both RNA-Seq and microarray analyses: Cxcl5, Cxcl1, Zc3h12a, Ereg, Slc2a1, and Egln1. As part of a broad inflammatory response inferred by gene ontology analyses, we again observed greatest up-regulation of inflammatory C-X-C motif chemokines, and newly implicated HIF-1α and AMPK signaling pathways. Importantly, we detected both expected fluid flow-sensitive transcripts (e.g. Nos2 [iNOS], Ptgs2 [COX-2], Ccl7) and transcripts not previously identified as flow-sensitive, e.g. Ccl2. We found RNA-Seq advantageous over microarrays because of its greater dynamic range and ability to analyze unbiased estimation of gene expression, informing our understanding of osteocyte signaling.
UR - http://www.scopus.com/inward/record.url?scp=84951761497&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84951761497&partnerID=8YFLogxK
U2 - 10.1016/j.jbiomech.2015.10.045
DO - 10.1016/j.jbiomech.2015.10.045
M3 - Article
C2 - 26573903
AN - SCOPUS:84951761497
SN - 0021-9290
VL - 48
SP - 4327
EP - 4332
JO - Journal of Biomechanics
JF - Journal of Biomechanics
IS - 16
ER -