TY - JOUR
T1 - Markup SVGAn online content-aware image abstraction and annotation tool
AU - Kim, Edward
AU - Huang, Xiaolei
AU - Tan, Gang
N1 - Funding Information:
Manuscript received September 17, 2010; revised March 11, 2011; accepted June 12, 2011. Date of publication July 05, 2011; date of current version September 16, 2011. This work was supported in part by a grant from the National Science Foundation under contract NSF IIS-0812120. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Ajay Divakaran.
PY - 2011/10
Y1 - 2011/10
N2 - Suppose you want to effectively search through millions of images, train an algorithm to perform image and video object recognition, or research the complex patterns and relationships that exist in our visual world. A common and essential component for any of these tasks is a large annotated image dataset. However, obtaining labeled image data is a complex and tedious task that requires methods for annotating and structuring content. Therefore, we developed a comprehensive online tool and data structure, Markup SVG, that simplifies the collection of annotated image data by leveraging state-of-the-art image processing techniques. As the core data structure of our tool, we adopt scalable vector graphics (SVG), an extensible and versatile language built upon XML. Given the extensibility of our framework, we are able to encode low-level image features, high-level semantics, and further define interactions with the data to assist the user with image annotation. We also demonstrate the ability to merge multiple online and offline datasets into our system in an effort to standardize image collection and its data representation. Lastly, we present our modular design; each component acts as a plug-in to our system. We developed several novel components and algorithms to highlight the possibilities of semi-supervised segmentation and automatic annotation within our proposed framework. Further, our modular design provides the necessary capabilities to incorporate future image features, methods, or algorithms. Our results show that our tool is able to greatly simplify the process of obtaining large annotated image collections in an online collaborative platform.
AB - Suppose you want to effectively search through millions of images, train an algorithm to perform image and video object recognition, or research the complex patterns and relationships that exist in our visual world. A common and essential component for any of these tasks is a large annotated image dataset. However, obtaining labeled image data is a complex and tedious task that requires methods for annotating and structuring content. Therefore, we developed a comprehensive online tool and data structure, Markup SVG, that simplifies the collection of annotated image data by leveraging state-of-the-art image processing techniques. As the core data structure of our tool, we adopt scalable vector graphics (SVG), an extensible and versatile language built upon XML. Given the extensibility of our framework, we are able to encode low-level image features, high-level semantics, and further define interactions with the data to assist the user with image annotation. We also demonstrate the ability to merge multiple online and offline datasets into our system in an effort to standardize image collection and its data representation. Lastly, we present our modular design; each component acts as a plug-in to our system. We developed several novel components and algorithms to highlight the possibilities of semi-supervised segmentation and automatic annotation within our proposed framework. Further, our modular design provides the necessary capabilities to incorporate future image features, methods, or algorithms. Our results show that our tool is able to greatly simplify the process of obtaining large annotated image collections in an online collaborative platform.
UR - http://www.scopus.com/inward/record.url?scp=80052942174&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052942174&partnerID=8YFLogxK
U2 - 10.1109/TMM.2011.2161275
DO - 10.1109/TMM.2011.2161275
M3 - Article
AN - SCOPUS:80052942174
SN - 1520-9210
VL - 13
SP - 993
EP - 1006
JO - IEEE Transactions on Multimedia
JF - IEEE Transactions on Multimedia
IS - 5
M1 - 5940230
ER -