Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw

Frederick C. Michel, John A. Pecchia, Jerome Rigot, Harold M. Keener

Research output: Contribution to journalArticlepeer-review

127 Scopus citations


Composting has become an increasingly popular manure management method for dairy farmers. However, the design of composting systems for farmers has been hindered by the limited amount of information on the quantities and volumes of compost produced relative to farm size and manure generated, and the impact of amendments on water, dry matter, volume and nitrogen losses during the composting process. Amendment type can affect the free air space, decomposition rate, temperature, C:N ratio and oxygen levels during composting. Amendments also initially increase the amount of material that must be handled. A better understanding of amendment effects should help farmers optimize, and potentially reduce costs associated with composting. In this study, freestall dairy manure (83% moisture) was amended with either hardwood sawdust or straw and composted for 110-155 days in turned windrows in four replicated trials that began on different dates. Initial C:N ratios of the windrows ranged from 25:1 to 50:1 due to variations in the source and N-content of the manure. Results showed that starting windrow volume for straw amended composts was 2.1 to 2.6 times greater than for sawdust amendment. Straw amended composts had low initial bulk densities with high free air space values of 75-93%. This led to lower temperatures and near ambient interstitial oxygen concentrations during composting. While all sawdust-amended composts self-heated to temperatures >55°C within 10 days, maintained these levels for more than 60 days and met EPA and USDA pathogen reduction guidelines, only two of the four straw amended windrows reached 55°C and none met the guidelines. In addition, sawdust amendment resulted in much lower windrow oxygen concentrations (< 5%) during the first 60 days. Both types of compost were stable after 100 days as indicated by CO2 evolution rates <0.5 mg CO2-C/g VS/d. Both types of amendments also led to extensive manure volume and weight reductions even after the weight of the added amendments were considered. However, moisture management proved critical in attaining reductions in manure weight during composting. Straw amendment resulted in greater volume decreases than sawdust amendment due to greater changes in bulk density and free air space. Through composting, farmers can reduce the volume and weights of material to be hauled by 50 to 80% based on equivalent nitrogen values of the stabilized compost as compared to unamended, uncomposted dairy manure. The initial total manure nitrogen lost during composting ranged from 7% to 38%. P and K losses were from 14 to 39% and from 1 to 38%, respectively. There was a significant negative correlation between C:N ratio and nitrogen loss (R2=0.78) and carbon loss (R2=0.86) during composting. An initial C:N ratio of greater than 40 is recommended to minimize nitrogen loss during dairy manure composting with sawdust or straw amendments.

Original languageEnglish (US)
Pages (from-to)323-334
Number of pages12
JournalCompost Science and Utilization
Issue number4
StatePublished - 2004

All Science Journal Classification (ASJC) codes

  • Ecology
  • Waste Management and Disposal
  • Soil Science


Dive into the research topics of 'Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw'. Together they form a unique fingerprint.

Cite this