TY - JOUR
T1 - Material dependence of plasma radiation produced by a capillary discharge
AU - Das, Malay
AU - Thynell, Stefan T.
AU - Li, Jianquan
AU - Litzinger, Thomas A.
N1 - Funding Information:
This work was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under Contract DAAD19-03-1-0340 with the management of David M. Mann.
PY - 2006
Y1 - 2006
N2 - An experimental investigation has been conducted on the radiative heat transfer from an electrothermal-chemical plasma jet The plasma jet was initiated by a 3.6-mg thin metallic wire within a 3.2 mm diameter and 26 mm long capillary. During the discharge of the 0.6 kJ of electrical energy, the plasma evolved from the capillary into an ambient air environment as an underexpanded supersonic jet that interacted with a stagnation plate. The effect of capillary and trigger wire materials on the radiative heat transfer between the plasma jet and stagnation plate was investigated. Experiments were conducted with nine different combinations of capillary and wire materials. Various diagnostic techniques were used, including heat flux and pressure gauges mounted on the stagnation plate, as well as a high-resolution charge-coupled device camera for flow visualization. A fused-silica window, placed about 1 mm above the gauges, ensured that only the radiative heat flux transmitted by the window was deduced. The results show that appreciable differences are present among the capillary and wire combinations, with a polycarbonate capillary and copper wire yielding the largest energy deposition in the substrate, whereas Teflon®-nickel yielded the lowest.
AB - An experimental investigation has been conducted on the radiative heat transfer from an electrothermal-chemical plasma jet The plasma jet was initiated by a 3.6-mg thin metallic wire within a 3.2 mm diameter and 26 mm long capillary. During the discharge of the 0.6 kJ of electrical energy, the plasma evolved from the capillary into an ambient air environment as an underexpanded supersonic jet that interacted with a stagnation plate. The effect of capillary and trigger wire materials on the radiative heat transfer between the plasma jet and stagnation plate was investigated. Experiments were conducted with nine different combinations of capillary and wire materials. Various diagnostic techniques were used, including heat flux and pressure gauges mounted on the stagnation plate, as well as a high-resolution charge-coupled device camera for flow visualization. A fused-silica window, placed about 1 mm above the gauges, ensured that only the radiative heat flux transmitted by the window was deduced. The results show that appreciable differences are present among the capillary and wire combinations, with a polycarbonate capillary and copper wire yielding the largest energy deposition in the substrate, whereas Teflon®-nickel yielded the lowest.
UR - http://www.scopus.com/inward/record.url?scp=33747041141&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33747041141&partnerID=8YFLogxK
U2 - 10.2514/1.17935
DO - 10.2514/1.17935
M3 - Article
AN - SCOPUS:33747041141
SN - 0887-8722
VL - 20
SP - 595
EP - 603
JO - Journal of thermophysics and heat transfer
JF - Journal of thermophysics and heat transfer
IS - 3
ER -