TY - JOUR
T1 - Maximizing design potential
T2 - investigating the effects of utilizing opportunistic and restrictive design for additive manufacturing in rapid response solutions
AU - Prabhu, Rohan
AU - Masia, Jordan Scott
AU - Berthel, Joseph T.
AU - Meisel, Nicholas Alexander
AU - Simpson, Timothy W.
N1 - Funding Information:
Funding. This research was sponsored in part by the National Science Foundation Grant No. CMMI-1712234. Any opinions, findings and conclusions expressed in this paper are those of the authors and do not necessarily reflect the views of the NSF.
Publisher Copyright:
© 2021, Emerald Publishing Limited.
PY - 2021
Y1 - 2021
N2 - Purpose: The COVID-19 pandemic has resulted in numerous innovative engineering design solutions, several of which leverage the rapid prototyping and manufacturing capabilities of additive manufacturing. This paper aims to study a subset of these solutions for their utilization of design for AM (DfAM) techniques and investigate the effects of DfAM utilization on the creativity and manufacturing efficiency of these solutions. Design/methodology/approach: This study compiled 26 COVID-19-related solutions designed for AM spanning three categories: (1) face shields (N = 6), (2) face masks (N = 12) and (3) hands-free door openers (N = 8). These solutions were assessed for (1) DfAM utilization, (2) manufacturing efficiency and (3) creativity. The relationships between these assessments were then computed using generalized linear models to investigate the influence of DfAM utilization on manufacturing efficiency and creativity. Findings: It is observed that (1) unique and original designs scored lower in their AM suitability, (2) solutions with higher complexity scored higher on usefulness and overall creativity and (3) solutions with higher complexity had higher build cost, build time and material usage. These findings highlight the need to account for both opportunistic and restrictive DfAM when evaluating solutions designed for AM. Balancing the two DfAM perspectives can support the development of solutions that are creative and consume fewer build resources. Originality/value: DfAM evaluation tools primarily focus on AM limitations to help designers avoid build failures. This paper proposes the need to assess designs for both, their opportunistic and restrictive DfAM utilization to appropriately assess the manufacturing efficiency of designs and to realize the creative potential of adopting AM.
AB - Purpose: The COVID-19 pandemic has resulted in numerous innovative engineering design solutions, several of which leverage the rapid prototyping and manufacturing capabilities of additive manufacturing. This paper aims to study a subset of these solutions for their utilization of design for AM (DfAM) techniques and investigate the effects of DfAM utilization on the creativity and manufacturing efficiency of these solutions. Design/methodology/approach: This study compiled 26 COVID-19-related solutions designed for AM spanning three categories: (1) face shields (N = 6), (2) face masks (N = 12) and (3) hands-free door openers (N = 8). These solutions were assessed for (1) DfAM utilization, (2) manufacturing efficiency and (3) creativity. The relationships between these assessments were then computed using generalized linear models to investigate the influence of DfAM utilization on manufacturing efficiency and creativity. Findings: It is observed that (1) unique and original designs scored lower in their AM suitability, (2) solutions with higher complexity scored higher on usefulness and overall creativity and (3) solutions with higher complexity had higher build cost, build time and material usage. These findings highlight the need to account for both opportunistic and restrictive DfAM when evaluating solutions designed for AM. Balancing the two DfAM perspectives can support the development of solutions that are creative and consume fewer build resources. Originality/value: DfAM evaluation tools primarily focus on AM limitations to help designers avoid build failures. This paper proposes the need to assess designs for both, their opportunistic and restrictive DfAM utilization to appropriately assess the manufacturing efficiency of designs and to realize the creative potential of adopting AM.
UR - http://www.scopus.com/inward/record.url?scp=85107985830&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107985830&partnerID=8YFLogxK
U2 - 10.1108/RPJ-11-2020-0297
DO - 10.1108/RPJ-11-2020-0297
M3 - Article
AN - SCOPUS:85107985830
SN - 1355-2546
VL - 27
SP - 1161
EP - 1171
JO - Rapid Prototyping Journal
JF - Rapid Prototyping Journal
IS - 6
ER -