@inproceedings{0d3f9c7bd9aa4aaba38cb34af9663a9d,
title = "Maximizing friend-making likelihood for social activity organization",
abstract = "The social presence theory in social psychology suggests that computer-mediated online interactions are inferior to face-to-face, inperson interactions. In this paper, we consider the scenarios of organizing in person friend-making social activities via online social networks (OSNs) and formulate a new research problem, namely, Hop-bounded Maximum Group Friending (HMGF), by modeling both existing friendships and the likelihood of new friend making. To find a set of attendees for socialization activities, HMGF is unique and challenging due to the interplay of the group size, the constraint on existing friendships and the objective function on the likelihood of friend making. We prove that HMGF is NP-Hard, and no approximation algorithm exists unless P = NP. We then propose an error-bounded approximation algorithm to efficiently obtain the solutions very close to the optimal solutions. We conduct a user study to validate our problem formulation and perform extensive experiments on real datasets to demonstrate the efficiency and effectiveness of our proposed algorithm.",
author = "Shen, {Chih Ya} and Yang, {De Nian} and Lee, {Wang Chien} and Chen, {Ming Syan}",
note = "Publisher Copyright: {\textcopyright} Springer International Publishing Switzerland 2015.; 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2015 ; Conference date: 19-05-2015 Through 22-05-2015",
year = "2015",
doi = "10.1007/978-3-319-18038-0_1",
language = "English (US)",
isbn = "9783319180373",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "3--15",
editor = "Tu-Bao Ho and Hiroshi Motoda and Hiroshi Motoda and Ee-Peng Lim and Tru Cao and David Cheung and Zhi-Hua Zhou",
booktitle = "Advances in Knowledge Discovery and Data Mining - 19th Pacific-Asia Conference, PAKDD 2015, Proceedings",
address = "Germany",
}