TY - JOUR
T1 - Maximum Removal Efficiency of Barium, Strontium, Radium, and Sulfate with Optimum AMD-Marcellus Flowback Mixing Ratios for Beneficial Use in the Northern Appalachian Basin
AU - McDevitt, Bonnie
AU - Cavazza, Michael
AU - Beam, Richard
AU - Cavazza, Eric
AU - Burgos, William D.
AU - Li, Li
AU - Warner, Nathaniel R.
N1 - Publisher Copyright:
© 2020 American Chemical Society.
PY - 2020/4/21
Y1 - 2020/4/21
N2 - Mixing of acid mine drainage (AMD) and hydraulic fracturing flowback fluids (HFFF) could represent an efficient management practice to simultaneously manage two complex energy wastewater streams while reducing freshwater resource consumption. AMD discharges offer generally high sulfate concentrations, especially from the bituminous coal region of Pennsylvania; unconventional Marcellus shale gas wells generally yield HFFF enriched in alkaline earth metals such as Sr and Ba, known to cause scaling issues in oil and gas (O&G) production. Mixing the two waters can precipitate HFFF-Ba and -Sr with AMD-SO4, therefore removing them from solution. Four AMD discharges and HFFF from two unconventional Marcellus shale gas wells were characterized and mixed in batch reactors for 14 days. Ba could be completely removed from solution within 1 day of mixing in the form BaxSr1-xSO4 and no further significant precipitation occurred after 2 days. Total removal efficiencies of Ba + Sr + SO4 and the proportion of Ba and Sr in BaxSr1-xSO4 depended upon the Ba/Sr ratio in the initial HFFF. A geochemical model was calibrated from batch reactor data and used to identify optimum AMD-HFFF mixing ratios that maximize total removal efficiencies (Ba + Sr + SO4) for reuse in O&G development. Increasing Ba/Sr ratios can enhance total removal efficiency but decrease the efficiency of Ra removal. Thus, treatment objectives and intended beneficial reuse need to be identified prior to optimizing the treatment of HFFF with AMD.
AB - Mixing of acid mine drainage (AMD) and hydraulic fracturing flowback fluids (HFFF) could represent an efficient management practice to simultaneously manage two complex energy wastewater streams while reducing freshwater resource consumption. AMD discharges offer generally high sulfate concentrations, especially from the bituminous coal region of Pennsylvania; unconventional Marcellus shale gas wells generally yield HFFF enriched in alkaline earth metals such as Sr and Ba, known to cause scaling issues in oil and gas (O&G) production. Mixing the two waters can precipitate HFFF-Ba and -Sr with AMD-SO4, therefore removing them from solution. Four AMD discharges and HFFF from two unconventional Marcellus shale gas wells were characterized and mixed in batch reactors for 14 days. Ba could be completely removed from solution within 1 day of mixing in the form BaxSr1-xSO4 and no further significant precipitation occurred after 2 days. Total removal efficiencies of Ba + Sr + SO4 and the proportion of Ba and Sr in BaxSr1-xSO4 depended upon the Ba/Sr ratio in the initial HFFF. A geochemical model was calibrated from batch reactor data and used to identify optimum AMD-HFFF mixing ratios that maximize total removal efficiencies (Ba + Sr + SO4) for reuse in O&G development. Increasing Ba/Sr ratios can enhance total removal efficiency but decrease the efficiency of Ra removal. Thus, treatment objectives and intended beneficial reuse need to be identified prior to optimizing the treatment of HFFF with AMD.
UR - http://www.scopus.com/inward/record.url?scp=85083269868&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083269868&partnerID=8YFLogxK
U2 - 10.1021/acs.est.9b07072
DO - 10.1021/acs.est.9b07072
M3 - Article
C2 - 32250106
AN - SCOPUS:85083269868
SN - 0013-936X
VL - 54
SP - 4829
EP - 4839
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 8
ER -