Abstract
Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ∼300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
Original language | English (US) |
---|---|
Pages (from-to) | 382-393 |
Number of pages | 12 |
Journal | Astroparticle Physics |
Volume | 34 |
Issue number | 6 |
DOIs | |
State | Published - Jan 2011 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Measurement of acoustic attenuation in South Pole ice'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astroparticle Physics, Vol. 34, No. 6, 01.2011, p. 382-393.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Measurement of acoustic attenuation in South Pole ice
AU - Abbasi, R.
AU - Abdou, Y.
AU - Abu-Zayyad, T.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Andeen, K.
AU - Auffenberg, J.
AU - Bai, X.
AU - Baker, M.
AU - Barwick, S. W.
AU - Bay, R.
AU - Bazo Alba, J. L.
AU - Beattie, K.
AU - Beatty, J. J.
AU - Bechet, S.
AU - Becker, J. K.
AU - Becker, K. H.
AU - Benabderrahmane, M. L.
AU - Berdermann, J.
AU - Berghaus, P.
AU - Berley, D.
AU - Bernardini, E.
AU - Bertrand, D.
AU - Besson, D. Z.
AU - Bissok, M.
AU - Blaufuss, E.
AU - Boersma, D. J.
AU - Bohm, C.
AU - Böser, S.
AU - Botner, O.
AU - Bradley, L.
AU - Braun, J.
AU - Buitink, S.
AU - Carson, M.
AU - Chirkin, D.
AU - Christy, B.
AU - Clem, J.
AU - Clevermann, F.
AU - Cohen, S.
AU - Colnard, C.
AU - Cowen, D. F.
AU - D'Agostino, M. V.
AU - Danninger, M.
AU - De Clercq, C.
AU - Demirörs, L.
AU - Depaepe, O.
AU - Descamps, F.
AU - Desiati, P.
AU - De Vries-Uiterweerd, G.
AU - Deyoung, T.
AU - Díaz-Vélez, J. C.
AU - Dreyer, J.
AU - Dumm, J. P.
AU - Duvoort, M. R.
AU - Ehrlich, R.
AU - Eisch, J.
AU - Ellsworth, R. W.
AU - Engdegrd, O.
AU - Euler, S.
AU - Evenson, P. A.
AU - Fadiran, O.
AU - Fazely, A. R.
AU - Feusels, T.
AU - Filimonov, K.
AU - Finley, C.
AU - Foerster, M. M.
AU - Fox, B. D.
AU - Franckowiak, A.
AU - Franke, R.
AU - Gaisser, T. K.
AU - Gallagher, J.
AU - Ganugapati, R.
AU - Geisler, M.
AU - Gerhardt, L.
AU - Gladstone, L.
AU - Glüsenkamp, T.
AU - Goldschmidt, A.
AU - Goodman, J. A.
AU - Grant, D.
AU - Griesel, T.
AU - Groß, A.
AU - Grullon, S.
AU - Gunasingha, R. M.
AU - Gurtner, M.
AU - Gustafsson, L.
AU - Ha, C.
AU - Hallgren, A.
AU - Halzen, F.
AU - Han, K.
AU - Hanson, K.
AU - Helbing, K.
AU - Herquet, P.
AU - Hickford, S.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Homeier, A.
AU - Hoshina, K.
AU - Hubert, D.
AU - Huelsnitz, W.
AU - Hülß, J. P.
AU - Hulth, P. O.
AU - Hultqvist, K.
AU - Hussain, S.
AU - Imlay, R. L.
AU - Ishihara, A.
AU - Jacobsen, J.
AU - Japaridze, G. S.
AU - Johansson, H.
AU - Joseph, J. M.
AU - Kampert, K. H.
AU - Kappes, A.
AU - Karg, T.
AU - Karle, A.
AU - Kelley, J. L.
AU - Kemming, N.
AU - Kenny, P.
AU - Kiryluk, J.
AU - Kislat, F.
AU - Klein, S. R.
AU - Knops, S.
AU - Köhne, J. H.
AU - Kohnen, G.
AU - Kolanoski, H.
AU - Köpke, L.
AU - Koskinen, D. J.
AU - Kowalski, M.
AU - Kowarik, T.
AU - Krasberg, M.
AU - Krings, T.
AU - Kroll, G.
AU - Kuehn, K.
AU - Kuwabara, T.
AU - Labare, M.
AU - Lafebre, S.
AU - Laihem, K.
AU - Landsman, H.
AU - Lauer, R.
AU - Lehmann, R.
AU - Lennarz, D.
AU - Lünemann, J.
AU - Madsen, J.
AU - Majumdar, P.
AU - Maruyama, R.
AU - Mase, K.
AU - Matis, H. S.
AU - Matusik, M.
AU - Meagher, K.
AU - Merck, M.
AU - Mészáros, P.
AU - Meures, T.
AU - Middell, E.
AU - Milke, N.
AU - Montaruli, T.
AU - Morse, R.
AU - Movit, S. M.
AU - Nahnhauer, R.
AU - Nam, J. W.
AU - Naumann, U.
AU - Nießen, P.
AU - Nygren, D. R.
AU - Odrowski, S.
AU - Olivas, A.
AU - Olivo, M.
AU - Ono, M.
AU - Panknin, S.
AU - Paul, L.
AU - Pérez De Los Heros, C.
AU - Petrovic, J.
AU - Piegsa, A.
AU - Pieloth, D.
AU - Porrata, R.
AU - Posselt, J.
AU - Price, P. B.
AU - Prikockis, M.
AU - Przybylski, G. T.
AU - Rawlins, K.
AU - Redl, P.
AU - Resconi, E.
AU - Rhode, W.
AU - Ribordy, M.
AU - Rizzo, A.
AU - Rodrigues, J. P.
AU - Roth, P.
AU - Rothmaier, F.
AU - Rott, C.
AU - Roucelle, C.
AU - Ruhe, T.
AU - Rutledge, D.
AU - Ruzybayev, B.
AU - Ryckbosch, D.
AU - Sander, H. G.
AU - Sarkar, S.
AU - Schatto, K.
AU - Schlenstedt, S.
AU - Schmidt, T.
AU - Schneider, D.
AU - Schukraft, A.
AU - Schultes, A.
AU - Schulz, O.
AU - Schunck, M.
AU - Seckel, D.
AU - Semburg, B.
AU - Seo, S. H.
AU - Sestayo, Y.
AU - Seunarine, S.
AU - Silvestri, A.
AU - Slipak, A.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stephens, G.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stoyanov, S.
AU - Strahler, E. A.
AU - Straszheim, T.
AU - Sullivan, G. W.
AU - Swillens, Q.
AU - Taboada, I.
AU - Tamburro, A.
AU - Tarasova, O.
AU - Tepe, A.
AU - Ter-Antonyan, S.
AU - Tilav, S.
AU - Toale, P. A.
AU - Tosi, D.
AU - Turčan, D.
AU - Van Eijndhoven, N.
AU - Vandenbroucke, J.
AU - Van Overloop, A.
AU - Van Santen, J.
AU - Voigt, B.
AU - Walck, C.
AU - Waldenmaier, T.
AU - Wallraff, M.
AU - Walter, M.
AU - Wendt, C.
AU - Westerhoff, S.
AU - Whitehorn, N.
AU - Wiebe, K.
AU - Wiebusch, C. H.
AU - Wikström, G.
AU - Williams, D. R.
AU - Wischnewski, R.
AU - Wissing, H.
AU - Woschnagg, K.
AU - Xu, C.
AU - Xu, X. W.
AU - Yanez, J. P.
AU - Yodh, G.
AU - Yoshida, S.
AU - Zarzhitsky, P.
N1 - Funding Information: We acknowledge the support from the following agencies: US National Science Foundation – Office of Polar Program, US National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, US Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Kappes and A. Groß acknowledge support by the EU Marie Curie OIF Program; J.P. Rodrigues acknowledge support by the Capes Foundation, Ministry of Education of Brazil.
PY - 2011/1
Y1 - 2011/1
N2 - Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ∼300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
AB - Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ∼300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
UR - http://www.scopus.com/inward/record.url?scp=78650521344&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78650521344&partnerID=8YFLogxK
U2 - 10.1016/j.astropartphys.2010.10.003
DO - 10.1016/j.astropartphys.2010.10.003
M3 - Article
AN - SCOPUS:78650521344
SN - 0927-6505
VL - 34
SP - 382
EP - 393
JO - Astroparticle Physics
JF - Astroparticle Physics
IS - 6
ER -