Measurement of cosmic-ray nuclei with the third flight of the CREAM balloon-borne experiment

Y. Amare, J. R. Smith, T. Anderson, D. Angelaszek, N. Anthony, K. Cheryian, G. H. Choi, M. Copley, S. Coutu, L. Derome, L. Eraud, L. Hagenau, J. H. Han, H. G. Huh, S. Im, J. A. Jeon, S. Jeong, K. C. Kim, M. H. Kim, H. Y. LeeJ. Lee, M. H. Lee, J. Liang, J. T. Link, L. Lu, L. Lutz, A. Menchaca-Rocha, T. Mernik, J. W. Mitchell, S. I. Mognet, S. Morton, M. Nester, S. Nutter, O. Ofoha, I. H. Park, N. Picot-Clemente, R. Quinn, E. S. Seo, P. Walpole, R. P. Weinmann, J. Wu, Y. S. Yoon

Research output: Contribution to journalConference articlepeer-review

Abstract

The balloon-borne Cosmic Ray Energetics And Mass experiment had its third flight (CREAM-III) over Antarctica for 29 days from December 17, 2007 to January 19, 2008. CREAM-III was designed to directly measure the elemental spectra of cosmic-ray nuclei from Hydrogen to Iron in the energy range from 1012 to 1015 eV. Energy of incident cosmic rays was measured with a calorimeter that consisted of a densified carbon target directly above a stack of 20 alternating layers of tungsten and scintillating fiber ribbons. Multiple charge measurements were independently made with the silicon charge detector (SCD), Cherenkov Camera (CherCam), and a Timing Charge Detector (TCD) in order to identify particles and minimize backscattering effects from the calorimeter. Compared to previous CREAM flights, the electronic noise of CREAM-III was reduced, significantly lowering the energy threshold. Results from on-going analysis of the energy spectra will be presented.

Original languageEnglish (US)
JournalProceedings of Science
StatePublished - 2017
Event35th International Cosmic Ray Conference, ICRC 2017 - Bexco, Busan, Korea, Republic of
Duration: Jul 10 2017Jul 20 2017

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Measurement of cosmic-ray nuclei with the third flight of the CREAM balloon-borne experiment'. Together they form a unique fingerprint.

Cite this