Abstract
One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton-antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton-proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and their properties.
Original language | English (US) |
---|---|
Pages (from-to) | 345-348 |
Number of pages | 4 |
Journal | Nature |
Volume | 527 |
Issue number | 7578 |
DOIs | |
State | Published - Nov 19 2015 |
All Science Journal Classification (ASJC) codes
- General
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Measurement of interaction between antiprotons'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nature, Vol. 527, No. 7578, 19.11.2015, p. 345-348.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Measurement of interaction between antiprotons
AU - Adamczyk, L.
AU - Adkins, J. K.
AU - Agakishiev, G.
AU - Aggarwal, M. M.
AU - Ahammed, Z.
AU - Alekseev, I.
AU - Alford, J.
AU - Aparin, A.
AU - Arkhipkin, D.
AU - Aschenauer, E. C.
AU - Averichev, G. S.
AU - Bairathi, V.
AU - Banerjee, A.
AU - Bellwied, R.
AU - Bhasin, A.
AU - Bhati, A. K.
AU - Bhattarai, P.
AU - Bielcik, J.
AU - Bielcikova, J.
AU - Bland, L. C.
AU - Bordyuzhin, I. G.
AU - Bouchet, J.
AU - Brandenburg, J. D.
AU - Brandin, A. V.
AU - Bunzarov, I.
AU - Butterworth, J.
AU - Caines, H.
AU - De La Barca Sánchez, M. Calderón
AU - Campbell, J. M.
AU - Cebra, D.
AU - Cervantes, M. C.
AU - Chakaberia, I.
AU - Chaloupka, P.
AU - Chang, Z.
AU - Chattopadhyay, S.
AU - Chen, J. H.
AU - Chen, X.
AU - Cheng, J.
AU - Cherney, M.
AU - Christie, W.
AU - Contin, G.
AU - Crawford, H. J.
AU - Das, S.
AU - De Silva, L. C.
AU - Debbe, R. R.
AU - Dedovich, T. G.
AU - Deng, J.
AU - Derevschikov, A. A.
AU - Di Ruzza, B.
AU - Didenko, L.
AU - Dilks, C.
AU - Dong, X.
AU - Drachenberg, J. L.
AU - Draper, J. E.
AU - Du, C. M.
AU - Dunkelberger, L. E.
AU - Dunlop, J. C.
AU - Efimov, L. G.
AU - Engelage, J.
AU - Eppley, G.
AU - Esha, R.
AU - Evdokimov, O.
AU - Eyser, O.
AU - Fatemi, R.
AU - Fazio, S.
AU - Federic, P.
AU - Fedorisin, J.
AU - Feng, Z.
AU - Filip, P.
AU - Fisyak, Y.
AU - Flores, C. E.
AU - Fulek, L.
AU - Gagliardi, C. A.
AU - Garand, D.
AU - Geurts, F.
AU - Gibson, A.
AU - Girard, M.
AU - Greiner, L.
AU - Grosnick, D.
AU - Gunarathne, D. S.
AU - Guo, Y.
AU - Gupta, A.
AU - Gupta, S.
AU - Guryn, W.
AU - Hamad, A.
AU - Hamed, A.
AU - Haque, R.
AU - Harris, J. W.
AU - He, L.
AU - Heppelmann, S.
AU - Heppelmann, S.
AU - Hirsch, A.
AU - Hoffmann, G. W.
AU - Hofman, D. J.
AU - Horvat, S.
AU - Huang, B.
AU - Huang, H. Z.
AU - Huang, X.
AU - Huck, P.
AU - Humanic, T. J.
AU - Igo, G.
AU - Jacobs, W. W.
AU - Jang, H.
AU - Jiang, K.
AU - Judd, E. G.
AU - Kabana, S.
AU - Kalinkin, D.
AU - Kang, K.
AU - Kauder, K.
AU - Ke, H. W.
AU - Keane, D.
AU - Kechechyan, A.
AU - Khan, Z. H.
AU - Kikoa, D. P.
AU - Kisel, I.
AU - Kisiel, A.
AU - Klein, S.
AU - Kochenda, L.
AU - Koetke, D. D.
AU - Kollegger, T.
AU - Kosarzewski, L. K.
AU - Kraishan, A. F.
AU - Kravtsov, P.
AU - Krueger, K.
AU - Kulakov, I.
AU - Kumar, L.
AU - Kycia, R. A.
AU - Lamont, M. A.C.
AU - Landgraf, J. M.
AU - Landry, K. D.
AU - Lauret, J.
AU - Lebedev, A.
AU - Lednicky, R.
AU - Lee, J. H.
AU - Li, X.
AU - Li, Z. M.
AU - Li, Y.
AU - Li, W.
AU - Li, X.
AU - Li, C.
AU - Lisa, M. A.
AU - Liu, F.
AU - Ljubicic, T.
AU - Llope, W. J.
AU - Lomnitz, M.
AU - Longacre, R. S.
AU - Luo, X.
AU - Ma, G. L.
AU - Ma, R.
AU - Ma, Y. G.
AU - Ma, L.
AU - Magdy, N.
AU - Majka, R.
AU - Manion, A.
AU - Margetis, S.
AU - Markert, C.
AU - Masui, H.
AU - Matis, H. S.
AU - McDonald, D.
AU - Meehan, K.
AU - Minaev, N. G.
AU - Mioduszewski, S.
AU - Mishra, D.
AU - Mohanty, B.
AU - Mondal, M. M.
AU - Morozov, D. A.
AU - Mustafa, M. K.
AU - Nandi, B. K.
AU - Nasim, Md
AU - Nayak, T. K.
AU - Nigmatkulov, G.
AU - Nogach, L. V.
AU - Noh, S. Y.
AU - Novak, J.
AU - Nurushev, S. B.
AU - Odyniec, G.
AU - Ogawa, A.
AU - Oh, K.
AU - Okorokov, V.
AU - Olvitt, D.
AU - Page, B. S.
AU - Pak, R.
AU - Pan, Y. X.
AU - Pandit, Y.
AU - Panebratsev, Y.
AU - Pawlik, B.
AU - Pei, H.
AU - Perkins, C.
AU - Peterson, A.
AU - Pile, P.
AU - Planinic, M.
AU - Pluta, J.
AU - Poljak, N.
AU - Poniatowska, K.
AU - Porter, J.
AU - Posik, M.
AU - Poskanzer, A. M.
AU - Putschke, J.
AU - Qiu, H.
AU - Quintero, A.
AU - Ramachandran, S.
AU - Raniwala, R.
AU - Raniwala, S.
AU - Ray, R. L.
AU - Ritter, H. G.
AU - Roberts, J. B.
AU - Rogachevskiy, O. V.
AU - Romero, J. L.
AU - Roy, A.
AU - Ruan, L.
AU - Rusnak, J.
AU - Rusnakova, O.
AU - Sahoo, N. R.
AU - Sahu, P. K.
AU - Sakrejda, I.
AU - Salur, S.
AU - Sandweiss, J.
AU - Sarkar, A.
AU - Schambach, J.
AU - Scharenberg, R. P.
AU - Schmah, A. M.
AU - Schmidke, W. B.
AU - Schmitz, N.
AU - Seger, J.
AU - Seyboth, P.
AU - Shah, N.
AU - Shahaliev, E.
AU - Shanmuganathan, P. V.
AU - Shao, M.
AU - Sharma, M. K.
AU - Sharma, B.
AU - Shen, W. Q.
AU - Shi, S. S.
AU - Shou, Q. Y.
AU - Sichtermann, E. P.
AU - Sikora, R.
AU - Simko, M.
AU - Skoby, M. J.
AU - Smirnov, N.
AU - Smirnov, D.
AU - Song, L.
AU - Sorensen, P.
AU - Spinka, H. M.
AU - Srivastava, B.
AU - Stanislaus, T. D.S.
AU - Stepanov, M.
AU - Stock, R.
AU - Strikhanov, M.
AU - Stringfellow, B.
AU - Sumbera, M.
AU - Summa, B.
AU - Sun, Z.
AU - Sun, X. M.
AU - Sun, Y.
AU - Sun, X.
AU - Surrow, B.
AU - Svirida, N.
AU - Szelezniak, M. A.
AU - Tang, Z.
AU - Tang, A. H.
AU - Tarnowsky, T.
AU - Tawfik, A.
AU - Thomas, J. H.
AU - Timmins, A. R.
AU - Tlusty, D.
AU - Tokarev, M.
AU - Trentalange, S.
AU - Tribble, R. E.
AU - Tribedy, P.
AU - Tripathy, S. K.
AU - Trzeciak, B. A.
AU - Tsai, O. D.
AU - Ullrich, T.
AU - Underwood, D. G.
AU - Upsal, I.
AU - Buren, G. Van
AU - Van Nieuwenhuizen, G.
AU - Vandenbroucke, M.
AU - Varma, R.
AU - Vasiliev, A. N.
AU - Vertesi, R.
AU - Videbak, F.
AU - Viyogi, Y. P.
AU - Vokal, S.
AU - Voloshin, S. A.
AU - Vossen, A.
AU - Wang, G.
AU - Wang, H.
AU - Wang, J. S.
AU - Wang, Y.
AU - Wang, Y.
AU - Wang, F.
AU - Webb, J. C.
AU - Webb, G.
AU - Wen, L.
AU - Westfall, G. D.
AU - Wieman, H.
AU - Wissink, S. W.
AU - Witt, R.
AU - Wu, Y. F.
AU - Xiao, Z. G.
AU - Xie, W.
AU - Xin, K.
AU - Xu, Y. F.
AU - Xu, Q. H.
AU - Xu, H.
AU - Xu, N.
AU - Xu, Z.
AU - Yang, Y.
AU - Yang, C.
AU - Yang, S.
AU - Yang, Y.
AU - Yang, Q.
AU - Ye, Z.
AU - Yepes, P.
AU - Yi, L.
AU - Yip, K.
AU - Yoo, I. K.
AU - Yu, N.
AU - Zbroszczyk, H.
AU - Zha, W.
AU - Zhang, J. B.
AU - Zhang, Z.
AU - Zhang, J.
AU - Zhang, S.
AU - Zhang, X. P.
AU - Zhang, J.
AU - Zhang, Y.
AU - Zhao, J.
AU - Zhong, C.
AU - Zhou, L.
AU - Zhu, X.
AU - Zoulkarneeva, Y.
AU - Zyzak, M.
N1 - Publisher Copyright: © 2015 Macmillan Publishers Limited. All rights reserved.
PY - 2015/11/19
Y1 - 2015/11/19
N2 - One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton-antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton-proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and their properties.
AB - One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton-antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton-proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and their properties.
UR - http://www.scopus.com/inward/record.url?scp=84947714738&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84947714738&partnerID=8YFLogxK
U2 - 10.1038/nature15724
DO - 10.1038/nature15724
M3 - Article
C2 - 26536116
AN - SCOPUS:84947714738
SN - 0028-0836
VL - 527
SP - 345
EP - 348
JO - Nature
JF - Nature
IS - 7578
ER -