Abstract
We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ∼5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.
Original language | English (US) |
---|---|
Pages (from-to) | 277-286 |
Number of pages | 10 |
Journal | Astroparticle Physics |
Volume | 33 |
Issue number | 5-6 |
DOIs | |
State | Published - Jun 2010 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astroparticle Physics, Vol. 33, No. 5-6, 06.2010, p. 277-286.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy
AU - Abbasi, R.
AU - Abdou, Y.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Andeen, K.
AU - Auffenberg, J.
AU - Bai, X.
AU - Baker, M.
AU - Barwick, S. W.
AU - Bay, R.
AU - Bazo Alba, J. L.
AU - Beattie, K.
AU - Beatty, J. J.
AU - Bechet, S.
AU - Becker, J. K.
AU - Becker, K. H.
AU - Benabderrahmane, M. L.
AU - Berdermann, J.
AU - Berghaus, P.
AU - Berley, D.
AU - Bernardini, E.
AU - Bertrand, D.
AU - Besson, D. Z.
AU - Bissok, M.
AU - Blaufuss, E.
AU - Boersma, D. J.
AU - Bohm, C.
AU - Bolmont, J.
AU - Böser, S.
AU - Botner, O.
AU - Bradley, L.
AU - Braun, J.
AU - Breder, D.
AU - Castermans, T.
AU - Chirkin, D.
AU - Christy, B.
AU - Clem, J.
AU - Cohen, S.
AU - Cowen, D. F.
AU - D'Agostino, M. V.
AU - Danninger, M.
AU - Day, C. T.
AU - De Clercq, C.
AU - Demirörs, L.
AU - Depaepe, O.
AU - Descamps, F.
AU - Desiati, P.
AU - De Vries-Uiterweerd, G.
AU - Deyoung, T.
AU - Diaz-Velez, J. C.
AU - Dreyer, J.
AU - Dumm, J. P.
AU - Duvoort, M. R.
AU - Edwards, W. R.
AU - Ehrlich, R.
AU - Eisch, J.
AU - Ellsworth, R. W.
AU - Engdegrd, O.
AU - Euler, S.
AU - Evenson, P. A.
AU - Fadiran, O.
AU - Fazely, A. R.
AU - Feusels, T.
AU - Filimonov, K.
AU - Finley, C.
AU - Foerster, M. M.
AU - Fox, B. D.
AU - Franckowiak, A.
AU - Franke, R.
AU - Gaisser, T. K.
AU - Gallagher, J.
AU - Ganugapati, R.
AU - Gerhardt, L.
AU - Gladstone, L.
AU - Goldschmidt, A.
AU - Goodman, J. A.
AU - Gozzini, R.
AU - Grant, D.
AU - Griesel, T.
AU - Groß, A.
AU - Grullon, S.
AU - Gunasingha, R. M.
AU - Gurtner, M.
AU - Ha, C.
AU - Hallgren, A.
AU - Halzen, F.
AU - Han, K.
AU - Hanson, K.
AU - Hasegawa, Y.
AU - Heise, J.
AU - Helbing, K.
AU - Herquet, P.
AU - Hickford, S.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Hoshina, K.
AU - Hubert, D.
AU - Huelsnitz, W.
AU - Hülß, J. P.
AU - Hulth, P. O.
AU - Hultqvist, K.
AU - Hussain, S.
AU - Imlay, R. L.
AU - Inaba, M.
AU - Ishihara, A.
AU - Jacobsen, J.
AU - Japaridze, G. S.
AU - Johansson, H.
AU - Joseph, J. M.
AU - Kampert, K. H.
AU - Kappes, A.
AU - Karg, T.
AU - Karle, A.
AU - Kelley, J. L.
AU - Kenny, P.
AU - Kiryluk, J.
AU - Kislat, F.
AU - Klein, S. R.
AU - Klepser, S.
AU - Knops, S.
AU - Kohnen, G.
AU - Kolanoski, H.
AU - Köpke, L.
AU - Kowalski, M.
AU - Kowarik, T.
AU - Krasberg, M.
AU - Kuehn, K.
AU - Kuwabara, T.
AU - Labare, M.
AU - Lafebre, S.
AU - Laihem, K.
AU - Landsman, H.
AU - Lauer, R.
AU - Leich, H.
AU - Lennarz, D.
AU - Lucke, A.
AU - Lundberg, J.
AU - Lünemann, J.
AU - Madsen, J.
AU - Majumdar, P.
AU - Maruyama, R.
AU - Mase, K.
AU - Matis, H. S.
AU - McParland, C. P.
AU - Meagher, K.
AU - Merck, M.
AU - Mészáros, P.
AU - Middell, E.
AU - Milke, N.
AU - Miyamoto, H.
AU - Mohr, A.
AU - Montaruli, T.
AU - Morse, R.
AU - Movit, S. M.
AU - Münich, K.
AU - Nahnhauer, R.
AU - Nam, J. W.
AU - Nießen, P.
AU - Nygren, D. R.
AU - Odrowski, S.
AU - Olivas, A.
AU - Olivo, M.
AU - Ono, M.
AU - Panknin, S.
AU - Patton, S.
AU - Pérez De Los Heros, C.
AU - Petrovic, J.
AU - Piegsa, A.
AU - Pieloth, D.
AU - Pohl, A. C.
AU - Porrata, R.
AU - Potthoff, N.
AU - Price, P. B.
AU - Prikockis, M.
AU - Przybylski, G. T.
AU - Rawlins, K.
AU - Redl, P.
AU - Resconi, E.
AU - Rhode, W.
AU - Ribordy, M.
AU - Rizzo, A.
AU - Rodrigues, J. P.
AU - Roth, P.
AU - Rothmaier, F.
AU - Rott, C.
AU - Roucelle, C.
AU - Rutledge, D.
AU - Ryckbosch, D.
AU - Sander, H. G.
AU - Sarkar, S.
AU - Satalecka, K.
AU - Schlenstedt, S.
AU - Schmidt, T.
AU - Schneider, D.
AU - Schukraft, A.
AU - Schulz, O.
AU - Schunck, M.
AU - Seckel, D.
AU - Semburg, B.
AU - Seo, S. H.
AU - Sestayo, Y.
AU - Seunarine, S.
AU - Silvestri, A.
AU - Slipak, A.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stephens, G.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stoufer, M. C.
AU - Stoyanov, S.
AU - Strahler, E. A.
AU - Straszheim, T.
AU - Sulanke, K. H.
AU - Sullivan, G. W.
AU - Swillens, Q.
AU - Taboada, I.
AU - Tarasova, O.
AU - Tepe, A.
AU - Ter-Antonyan, S.
AU - Terranova, C.
AU - Tilav, S.
AU - Tluczykont, M.
AU - Toale, P. A.
AU - Tosi, D.
AU - Turan, D.
AU - Van Eijndhoven, N.
AU - Vandenbroucke, J.
AU - Van Overloop, A.
AU - Vogt, C.
AU - Voigt, B.
AU - Walck, C.
AU - Waldenmaier, T.
AU - Walter, M.
AU - Wendt, C.
AU - Westerhoff, S.
AU - Whitehorn, N.
AU - Wiebusch, C. H.
AU - Wiedemann, A.
AU - Wikström, G.
AU - Williams, D. R.
AU - Wischnewski, R.
AU - Wissing, H.
AU - Woschnagg, K.
AU - Xu, X. W.
AU - Yodh, G.
AU - Yoshida, S.
N1 - Funding Information: We acknowledge the support from the following agencies: US National Science Foundation-Office of Polar Programs , US National Science Foundation-Physics Division , University of Wisconsin Alumni Research Foundation , US Department of Energy, and National Energy Research Scientific Computing Center , the Louisiana Optical Network Initiative (LONI) grid computing resources ; Swedish Research Council, Swedish Polar Research Secretariat, and Knut and Alice Wallenberg Foundation, Sweden ; German Ministry for Education and Research (BMBF) , Deutsche Forschungsgemeinschaft (DFG) , Germany; Fund for Scientific Research (FNRS-FWO) , Flanders Institute to encourage scientific and technological research in industry (IWT) , Belgian Federal Science Policy Office (Belspo) ; the Netherlands Organisation for Scientific Research (NWO) ; Marsden Fund, New Zealand ; M. Ribordy acknowledges the support of the SNF (Switzerland); A. Kappes and A. Groß acknowledge support by the EU Marie Curie OIF Program; J.P. Rodrigues acknowledge support by the Capes Foundation, Ministry of Education of Brazil.
PY - 2010/6
Y1 - 2010/6
N2 - We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ∼5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.
AB - We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ∼5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.
UR - http://www.scopus.com/inward/record.url?scp=77955176407&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955176407&partnerID=8YFLogxK
U2 - 10.1016/j.astropartphys.2010.01.012
DO - 10.1016/j.astropartphys.2010.01.012
M3 - Article
AN - SCOPUS:77955176407
SN - 0927-6505
VL - 33
SP - 277
EP - 286
JO - Astroparticle Physics
JF - Astroparticle Physics
IS - 5-6
ER -