Measuring and Mitigating the Risk of IP Reuse on Public Clouds

Eric Pauley, Ryan Sheatsley, Blaine Hoak, Quinn Burke, Yohan Beugin, Patrick McDaniel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Public clouds provide scalable and cost-efficient computing through resource sharing. However, moving from traditional on-premises service management to clouds introduces new challenges; failure to correctly provision, maintain, or decommission elastic services can lead to functional failure and vulnerability to attack. In this paper, we explore a broad class of attacks on clouds which we refer to as cloud squatting. In a cloud squatting attack, an adversary allocates resources in the cloud (e.g., IP addresses) and thereafter leverages latent configuration to exploit prior tenants. To measure and categorize cloud squatting we deployed a custom Internet telescope within the Amazon Web Services us-east-1 region. Using this apparatus, we deployed over 3 million servers receiving 1.5 million unique IP addresses (\approx 56% of the available pool) over 101 days beginning in March of 2021. We identified 4 classes of cloud services, 7 classes of third-party services, and DNS as sources of exploitable latent configurations. We discovered that exploitable configurations were both common and in many cases extremely dangerous; we received over 5 million cloud messages, many containing sensitive data such as financial transactions, GPS location, and PII. Within the 7 classes of third-party services, we identified dozens of exploitable software systems spanning hundreds of servers (e.g., databases, caches, mobile applications, and web services). Lastly, we identified 5446 exploitable domains panning 231 eTLDs - including 105 in the top 10000 and 23 in the top 1000 popular domains. Through tenant disclosures we have identified several root causes, including (a) a lack of organizational controls, (b) poor service hygiene, and (c) failure to follow best practices. We conclude with a discussion of the space of possible mitigations and describe the mitigations to be deployed by Amazon in response to this study.

Original languageEnglish (US)
Title of host publicationProceedings - 43rd IEEE Symposium on Security and Privacy, SP 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages558-575
Number of pages18
ISBN (Electronic)9781665413169
DOIs
StatePublished - 2022
Event43rd IEEE Symposium on Security and Privacy, SP 2022 - San Francisco, United States
Duration: May 23 2022May 26 2022

Publication series

NameProceedings - IEEE Symposium on Security and Privacy
Volume2022-May
ISSN (Print)1081-6011

Conference

Conference43rd IEEE Symposium on Security and Privacy, SP 2022
Country/TerritoryUnited States
CitySan Francisco
Period5/23/225/26/22

All Science Journal Classification (ASJC) codes

  • Safety, Risk, Reliability and Quality
  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Measuring and Mitigating the Risk of IP Reuse on Public Clouds'. Together they form a unique fingerprint.

Cite this