Measuring the thermal sensitivity of a fiber Fabry-Pérot interferometer

Jeff Jennings, Samuel Halverson, Scott A. Diddams, Ryan Terrien, Gabriel Ycas, Suvrath Mahadevan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


We introduce a general technique for frequency stability characterization of Fabry-Perot etalons that are being explored for astronomical spectrograph calibration. In our approach a frequency-stabilized laser frequency comb is employed as a reference for a scanning CW laser measurement of the temperature sensitivity of a fiber Fabry-Perot interferometer (FFP). For an in-house constructed, actively stabilized FFP, we observe the thermal sensitivity of a resonance mode at 1319 nm of ∼7.4 GHz C-1, which corresponds to a fractional thermal sensitivity of ∼3.2 × 10-5 C-1. We compare these results to a simple model and discuss further the materials construction and stabilization of the FFP. Our measurement technique is one step toward a broad characterization of Fabry-Perot instruments, and this FFP in particular is currently being investigated as a wavelength calibration source in precision radial velocity spectroscopy to discover terrestrial-mass exoplanets.

Original languageEnglish (US)
Title of host publicationOptical and Infrared Interferometry and Imaging V
EditorsMichelle J. Creech-Eakman, Fabien Malbet, Peter G. Tuthill
ISBN (Electronic)9781510601932
StatePublished - 2016
EventOptical and Infrared Interferometry and Imaging V - Edinburgh, United Kingdom
Duration: Jun 27 2016Jul 1 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherOptical and Infrared Interferometry and Imaging V
Country/TerritoryUnited Kingdom

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Measuring the thermal sensitivity of a fiber Fabry-Pérot interferometer'. Together they form a unique fingerprint.

Cite this