Mechanical Counterbalance of Kinesin and Dynein Motors in a Microtubular Network Regulates Cell Mechanics, 3D Architecture, and Mechanosensing

Alexander S. Zhovmer, Alexis Manning, Chynna Smith, James B. Hayes, Dylan T. Burnette, Jian Wang, Alexander X. Cartagena-Rivera, Nikolay V. Dokholyan, Rakesh K. Singh, Erdem D. Tabdanov

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Microtubules (MTs) and MT motor proteins form active 3D networks made of unstretchable cables with rod-like bending mechanics that provide cells with a dynamically changing structural scaffold. In this study, we report an antagonistic mechanical balance within the dynein-kinesin microtubular motor system. Dynein activity drives the microtubular network inward compaction, while isolated activity of kinesins bundles and expands MTs into giant circular bands that deform the cell cortex into discoids. Furthermore, we show that dyneins recruit MTs to sites of cell adhesion, increasing the topographic contact guidance of cells, while kinesins antagonize it via retraction of MTs from sites of cell adhesion. Actin-To-microtubule translocation of septin-9 enhances kinesin-MT interactions, outbalances the activity of kinesins over that of dyneins, and induces the discoid architecture of cells. These orthogonal mechanisms of MT network reorganization highlight the existence of an intricate mechanical balance between motor activities of kinesins and dyneins that controls cell 3D architecture, mechanics, and cell-microenvironment interactions.

Original languageEnglish (US)
Pages (from-to)17528-17548
Number of pages21
JournalACS nano
Volume15
Issue number11
DOIs
StatePublished - Nov 23 2021

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • General Engineering
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Mechanical Counterbalance of Kinesin and Dynein Motors in a Microtubular Network Regulates Cell Mechanics, 3D Architecture, and Mechanosensing'. Together they form a unique fingerprint.

Cite this