Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes

Jaegeon Ryu, Tianwu Chen, Taesoo Bok, Gyujin Song, Jiyoung Ma, Chihyun Hwang, Langli Luo, Hyun Kon Song, Jaephil Cho, Chongmin Wang, Sulin Zhang, Soojin Park

Research output: Contribution to journalArticlepeer-review

109 Scopus citations

Abstract

High-theoretical capacity and low working potential make silicon ideal anode for lithium ion batteries. However, the large volume change of silicon upon lithiation/delithiation poses a critical challenge for stable battery operations. Here, we introduce an unprecedented design, which takes advantage of large deformation and ensures the structural stability of the material by developing a two-dimensional silicon nanosheet coated with a thin carbon layer. During electrochemical cycling, this carbon coated silicon nanosheet exhibits unique deformation patterns, featuring accommodation of deformation in the thickness direction upon lithiation, while forming ripples upon delithiation, as demonstrated by in situ transmission electron microscopy observation and chemomechanical simulation. The ripple formation presents a unique mechanism for releasing the cycling induced stress, rendering the electrode much more stable and durable than the uncoated counterparts. This work demonstrates a general principle as how to take the advantage of the large deformation materials for designing high capacity electrode.

Original languageEnglish (US)
Article number2924
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes'. Together they form a unique fingerprint.

Cite this