Abstract
Electrical interconnects that adopt self-similar, serpentine layouts offer exceptional levels of stretchability in systems that consist of collections of small, non-stretchable active devices in the so-called island-bridge design. This paper develops analytical models of flexibility and elastic stretchability for such structures, and establishes recursive formulae at different orders of self-similarity. The analytic solutions agree well with finite element analysis, with both demonstrating that the elastic stretchability more than doubles when the order of the self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling ratios of 50% and 70% of active devices, respectively.
Original language | English (US) |
---|---|
Pages (from-to) | 7816-7827 |
Number of pages | 12 |
Journal | Acta Materialia |
Volume | 61 |
Issue number | 20 |
DOIs | |
State | Published - Dec 2013 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys