Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion

Suchitra Mohanty, Edward W. Harhaj

Research output: Contribution to journalReview articlepeer-review


Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10–20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections. The HTLV-1 replication cycle provides ligands, mainly nucleic acids (RNA, RNA/DNA intermediates, ssDNA intermediates, and dsDNA), that are sensed by different pattern recognition receptors (PRRs) to trigger immune responses. However, the mechanisms of innate immune detection and immune responses to HTLV-1 infection are not well understood. In this review, we highlight the functional roles of different immune sensors in recognizing HTLV-1 infection in multiple cell types and the antiviral roles of host restriction factors in limiting persistent infection of HTLV-1. We also provide a comprehensive overview of intricate strategies employed by HTLV-1 to subvert the host innate immune response that may contribute to the development of HTLV-1-associated diseases. A more detailed understanding of HTLV-1-host pathogen interactions may inform novel strategies for HTLV-1 antivirals, vaccines, and treatments for ATLL or HAM/TSP.

Original languageEnglish (US)
Article number735
Issue number5
StatePublished - May 2023

All Science Journal Classification (ASJC) codes

  • Immunology and Allergy
  • Molecular Biology
  • Immunology and Microbiology(all)
  • Microbiology (medical)
  • Infectious Diseases


Dive into the research topics of 'Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion'. Together they form a unique fingerprint.

Cite this